B-FM:Bayesian Factorization Machines

本文介绍了贝叶斯因子分解机(BFM),一种用于矩阵和张量分解的模型,提供快速的结构化贝叶斯学习。BFM通过非阻塞Gibbs采样器优化了因子分解机(FM),在推荐系统领域如Netflix挑战数据集上展现出高精度和扩展性。相比于标准FM,BFM引入了分层超先验,通过单参数Gibbs采样实现高效推理,并在不同维度下展示了优秀性能。
摘要由CSDN通过智能技术生成

Bayesian Factorization Machines【贝叶斯因子分解机】

-Christoph Freudenthaler, Lars Schmidt-Thieme,Steffen Rendle-2013

概要

本文为矩阵和张量因式分解模型提供了简单 快速的结构化贝叶斯学习。提出了一种非阻塞Gibbs采样器,用于FM【分解机】。
FM:一种包含矩阵、张量等多种分解模型的潜在变量模型。【贝叶斯FM比最先进的FM更快速、可扩展且更准确】

FM因子分解机

FM是使用p个解释变量x的目标y的回归模型,x是p维的。在这里插入图片描述
其中二阶和高阶参数在这里插入图片描述使用PARAFAC分解:在这里插入图片描述
FM包括D路张量因式分解,可通过工程化输入特征x表示,工程化向量X=在这里插入图片描述
作为不相交连续序列xi=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值