大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
本文主要介绍了baichuan(百川)1和2的tokenizer的比较,希望能对学习大模型的同学们有所帮助。
1. baichuan tokenizer算法介绍
Tokenizer 是大模型的核心组件之一。Tokenizer 的目标是将文本转换为模型可以处理的数据。模型只能处理数字,因此 Tokenizer 需要将文本输入转换为数字输入。
从宏观来看,总共包含三种类型的Tokenizer :Word-based Tokenizer、Character-based Tokenizer和Subword Tokenizer。
一般来说,由于Word-based Tokenizer是直接对word进行分割(比如相同的动词,需要同时包含不同时态下的单词),所对应的词典往往都很庞大,会导致embedding matrix会很大。以Transformer-XL为例,参考链接为