baichuan(百川)1和2的tokenizer的比较

  大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

  本文主要介绍了baichuan(百川)1和2的tokenizer的比较,希望能对学习大模型的同学们有所帮助。

1. baichuan tokenizer算法介绍

  Tokenizer 是大模型的核心组件之一。Tokenizer 的目标是将文本转换为模型可以处理的数据。模型只能处理数字,因此 Tokenizer 需要将文本输入转换为数字输入。

  从宏观来看,总共包含三种类型的Tokenizer :Word-based Tokenizer、Character-based Tokenizer和Subword Tokenizer。

  一般来说,由于Word-based Tokenizer是直接对word进行分割(比如相同的动词,需要同时包含不同时态下的单词),所对应的词典往往都很庞大,会导致embedding matrix会很大。以Transformer-XL为例,参考链接为

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值