量化交易:针对交易的组合数学和概率论

概述

依我的观点,概率论语言可针对行情内部运行过程提供完全不同等级的解读。 了解概率论的具体细节后,您将开始以全新的方式进行思考。 模糊的想法或一些未经证实的技巧也不会再诱发您急于用真实账户进行交易的愿望。 另一方面,我明白这种新途径也许并不适合所有人。 在本系列中,我打算向您展示一种真实且正确的交易方法。 所有决策都会仅基于数字,并应避免诸如“可能”、“假设”、“似乎”、和类似的假设。

添加图片注释,不超过 140 字(可选)

概率论如何在行情分析中发挥作用?

我一生中从事技术科学的时间很长,而概率论对我来说是最难的。 这是因为我始终搞不懂它的可能性有多广泛。 一个无可争议的优势在于其无可限量的能力,这仅取决于您的创意和勤奋,当然还有您的智慧。 经历多年的技术研究,我意识到智慧不在于执行相同类型操作时的速度和注意力,而是在于您的思维活跃性。 例如,如果我们研究微分数学、向量场和标量场理论,甚至学校代数,它们都暗示着一组特定的规则或建议,遵循这些规则或建议,您几乎可以解决任何问题。 每一个非标准的任务都是对我们头脑的冲击。 在概率论中,这样的时刻数不胜数 — 这就是许多问题只能通过完全不同的方法来解决的地方。 换言之,只有通过勤奋和愿意去解决给定的问题才能开发智力,而概率论有助您解决这个问题。

概率论的框架描述了这些基础交易概念,诸如数学期望、各种事件的可能概率、平均值、百分位数、及更多内容。 概率论声称没有完美的交易系统,每个系统都有自己的风险。 赫兹量化能做的只是选择不会因风险引起太多麻烦的交易系统。 更重要的是正确解读这些风险。 换句话说,赫兹量化从感觉或视觉等不精确的近似语言转向清晰的定量标准。 当然,视觉评估也很重要,但与定量变量结合运用时则效果更佳。 不可能在一篇文章中讲述所有详情和细微差别,但我将尝试在此处囊括一些有趣的信息。 我希望您能在此找到有用的东西。

运用概率论进行手动和自动交易的细节

我们继续运用概率论进行行情分析之前,我们首先需要熟悉事件及其概率。 事件是一组满足某些标准的产物,或者根据某些标准将其分到某个集合群当中。 若产物是某个初级元素,即与给定群中的所有其他元素相等。 群是指一个过程的所有可能产物。 这是什么样的过程、其物理原理是什么、或者这个过程需要多长时间,这都不那么重要。 重要的是,作为这个过程的产物,我们将得到过程完成前不存在的东西。 那些与我们的事件相关的产物本质上就是我们的事件— 为了方便起见,我们将它们组合成一个单一对象。 上面的思路可以如下形象化:

添加图片注释,不超过 140 字(可选)

上面的插图中灰色椭圆代表所有产物。 在数学中,它被称为事件空间。 这并不意味着事件空间具有几何形状,但它非常适合阐述这些概念。 椭圆内有 4 个事件。 从插图中所见,每个事件内部都有一个小红点。 此类红点的数量即可有限亦或无限 — 这取决于所研究的过程。 插图中的两个事件相交。 此类事件称为重叠。 因此,有一些产物同时属于两个事件。 所有其它事件不重叠,因为它们位于椭圆的不同部分,且并无几何相交。 其余的灰色区域可以认为是最后的事件,或者也可以将其分解为更小的部分,直至没有灰色区域遗留。

每个事件至少有一个对应的数字,通常称为概率。 概率是指如果我们可以无限期地进行相同的实验,那么在重复相同的过程时,该事件出现的频率。 有两种类型的事件空间:

  1. 可能产物的数量有限

  2. 可能产物的数量无限

如果产物的数量有限,那么概率可以计算如下:

  • P = S/N , S 是满足事件标准的产物数量,N 是事件空间中所有产物的总数

在某些情况下,当某个空间中的产物数量无限时,也可以判定该概率,例如使用积分。 对于上图中的情况,值 “S” 和 “N” 可以替换为其几何形状的面积。

并不总是能够清楚地定义事件空间是什么,以及定义事件的产物数量和物理描述。 这些图形表示应能帮助我们的大脑对数据进行类比,如此大脑就可以习惯用概率和与这些概率相对应的附加数字来尝试理解正在发生的事情,替代几何图形处理。 事件也可以称为状态。 如果我们使用状态的逻辑,那么概率则是重复相同实验导致特定状态出现的频率。

以图形的面积类推,椭圆中包含的所有图形的面积之和正好等于该椭圆的面积。 从数学方面,面积是落在那里的产物数量。 故此:

  • N = S[1] + S[2] + ... + S[n]

  • S 是特定事件的产物数量

  • N 是事件空间的所有产物

将等式的两边除以值 N,我们得到了一个有趣且非常重要的关系,其是整个概率理论的基础:

  • 1 = S[1]/N + S[2]/N + ... +S[n]/N

请注意,此比率仅适用于非重叠 事件。 因为如果将事件连接起来,形状区域会重叠,它们的区域总和会大于原始椭圆的区域。 它类似于拼图,其中所有拼图的面积与生成的图像完全相等。 在这种情况下,一块拼图代表事件之一。 所有这些分数代表特定事件的概率:

  • 1 = P[1] + P[2] + ... +P[n]

该比率则作为术语穷尽事件集合的基础。 穷尽事件集合是所有非重叠事件的统合,这些事件形成一个确定的事件空间。 对于拼图,一个完整的集合就是所有拼图。 所有这些事件的总概率必定等于 1,这意味着作为实验结果,这些事件之一必须会发生。 我们不知道哪个事件会发生,但我们会从实验结果中发现这一点。

根据上述内容,来自所选事件空间的任何一组产物都可作为一个事件。 这意味着穷尽集合能够收集所有可能的方式和组合。 当我们处理有限数量的产物时,这种组合的数量也许有限;若是产物数量无限,组合的数量始终是无限的。 如果已知产物的数量等于无穷,数学家就会考虑随机值的概念。 在某些情况下,随机值可以更方便地操作,且这是任务所允许的。 随机值是一种稍微不同的描述事件空间的方法。 在这种情况下,产物是清晰的一个或多个数字的集合。 我们可以说这是一个向量。 所考虑模型暗示了概率密度的概念。

在探索这个主题时,将进一步运用这些概念,所以我们现在就来研究它们。 概率密度是描述整个事件空间的函数。 这个函数的维度正好等于描述该事件空间中每个产物所需的数字数量。 例如,如果我们考虑射击靶场上一个目标的命中问题,这个函数的维度将等于 2,因为目标是平面(二维)。 在这种情况下,特定结果将由 X 和 Y 坐标表征。 这些数字是我们的随机变量,因此我们可以写出以下内容:

  • R = R(X,Y)

  • R 是子弹命中坐标点 (X,Y) 的概率密度

该函数属性使得该函数所有变量从负无穷到正无穷的全积分等于一,从而证明了上述等式。 这里的概率仅由函数所在区域的积分所决定。 不同的事件可以由分段集成区域组成。 因此,我们能够根据需要描述尽可能多的事件,因为它们的数量是无限的。 这个定义在本文的框架内就足够了。

我想添加一些关于重叠事件的更多细节。 这些事件对于对整个画面的一般性理解也非常重要。 很明显,与重叠事件相比,非重叠事件应该更容易处理。 概率论有时必须处理事件的组并或切分。 但在这里我们只对这些变换所示结果的概率感兴趣。 为此目的,我们将使用事件累加、和、乘积、以及反转操作的概念 . 这些操作与数学中的含义不同。 甚至,它们仅以概率进行操作。 连接事件的概率不能相加,因为这会破坏集合的完整性。 一般来说,应用于源事件的这 3 个操作可以描述由源事件片段组成的所有可能的事件。 使用两个重叠事件的例子,我可以在展板上示意它是何等模样:

添加图片注释,不超过 140 字(可选)

额外的代数运算可由上述那些组成。 例如,布尔除法相当于上图中的第三种和第四种情况,因为除法相当于乘以所选事件的倒数。 严格说来,前两个事件足以描述由源事件的部分组成的所有可能事件。 拥有两个以上重叠事件的案例要困难得多。 在本文中,我们将只处理非重叠事件。

行情数学主要基于随机游走的概念。 我们将研究这个概念,然后可以通过形态的存在来概括这些事件。 假设我们开仓时,并以距离开仓价同等空间设置止损、止盈。 在此,我们不考虑点差、佣金和掉期利率。 因此,如果我们在不同方向和不同图表点位上免费开仓,并随机交易,则盈亏比将等于 1。 换言之,在无休止的交易中,盈利仓位的数量将等于亏损仓位的数量。 综上所述,无论交易多长时间,利润均为零。 如果您算上所有佣金、点差和掉期利率,则最终结果将为负数值。

随机游走也许看起来毫无头绪,因为这个过程的数学推导总是会导致亏损。 但是随机游走能有助于计算不同事件的概率。 这也许包括以非对称止损平仓、或经过图表特定价格范围时以均价平仓。 我们还可以计算持仓生存期,和其它有用的变量,这些变量有助于计算风险、或助您尝试最大化盈利或最小化亏损。

概率树和假设

开发您的额叶的一个非常有用的例子是事件树,或概率树。 本主题源于伯努利预划案,它是所有概率树的基础。 该预划案验证彼此相随的非重叠事件链。 但在此之前,我们先来研究全概率公式。 通过研究这个重要的构造,我们可以继续处理伯努利预划案,及它们对应的概率树。 公式如下所示:

  • P(A) = Sum(0 ... i .... n) [ P(H[i]) * P(A|H[i]) ] - 事件 A 的概率

  • P(H[i]) — 假设概率 H[i]

  • P(A|H[i]) — 事件 A 在假设 H[i] 框架内发生的概率

我想说的是,在处理概率时,最好以假设的方式来编写它们。 例如,项式 P(H[k]|H[i]) 表示以下内容:

  1. 相对于空间 H[i] 计算出的事件 H[k] 的概率

这种方式可以清楚哪个事件被认为是空间,哪个事件是嵌套的。 事实上,每个事件都是一个小型的事件空间,其内可以容纳其它事件,而这些事件也可以作为事件空间,等等。 按照这个逻辑,项式 P(H[i]) 可以写成:

  • P(H[i]|O) — 因为这个概率是相对于 O 估算的。

现在,我们将总概率公式拆分为若干个部分,以便了解其背后的含义。 这个公式乍一看似乎很难,所以我们有必要把它说得更清楚。 首先,我会以略微不同的形式重写公式:

  • P(A) = (S[0] + ... + S[i] + ... + S[n]) / O = S[0]/O + ... + S[i]/O + ... + S[n]/O = (S[0]/N[0]) * ( N[0]/O ) + ... + (S[i]/N[i]) * ( N[i]/O ) + ... + (S[n]/N[n]) * ( N[n]/O )

  • S[i] — 假设 H[i] 交集特定片段的面积

  • N[i] — 整个假设 H[i](包括 S[i])的面积

  • O — 所有结果或整个椭圆的面积

进行小型变换后,即将分子和分母乘以值 N[i] ,我们可以看到原始公式中存在的概率:

  • S[i]/N[i] ----> P(A|H[i])

  • N[i]/O ----> P(H[i])

它可以用图形方式直观表达如下:

添加图片注释,不超过 140 字(可选)

外椭圆是事件空间。 中心椭圆是我们要寻找的事件概率。 假设它是一个时钟:绘制椭圆的直径,逆时针旋转,然后按假设将椭圆切割成线段。 假设只是事件的特殊名称。 然而,它们实际上是相同的事件,与我们计算概率的事件并无不同。

这个公式有一个特例,它将有助于建立伯努利预划案。 想象一下,中心椭圆整体处于这些假设之一的内部。 然后得出这个累加和的所有项,与其余的假设有关,自动归零,因为在这些假设中事件 A 的概率不可能发生或等于零,则这些项最终归零 . 结果就是,得到这个:

  • P(A) = P(H) * P(A|H)

  • H — 假设的概率,所选事件完全处于其内。

甚至,如果我们假设事件 A 也称为假设呢? 为什么不呢? 假设是一个事件,所以任何事件都是一个假设。 现在,假设有另一个事件 B,它位于 A 内部。 那么 A 是相对于 B 的假设,并且前面的公式适用于这两个事件:

  • P(B) = P(A) * P(B|A) = P(H) * P(A|H) * P(B|A)

插入之前的比率替换 P(A) — 您可以看到某种模式,可针对任意数量的嵌套假设或事件构建通用公式。 它的目的是什么? 这是伯努利公式的直接原型,我们稍后会研究。 现在,还有另一个有趣的事实需要研究。

关于分形

根据上面的公式,如果 P(A) + P(B) = 1,那么这是一个穷举的事件集合。 这意味着一个完整的群可由任意两个相互嵌套的假设链组成。 但是这些假设可能是重叠的。 如果我们要求所有可能的嵌套假设是其它不重叠的假设链,那么所有链自动与该事件空间中的链互不重叠。 它的图形表示是一个非常有趣的模式:

添加图片注释,不超过 140 字(可选)

这种模式被称为分形,因为这样的结构无法构建终结;它可以无限地构建下去。 在上图中,结构只有 3 层深度。 蓝色矩形表示单独概率链的末端。 如果我们将所有这些链的概率累加起来,它们将形成一组详尽的事件集合。

这种分形可以用组合来很好地描述。 组合基于阶乘的概念。 还有另一个概念,置换,它介于阶乘和组合之间。 置换公式是从阶乘公式推导出来的,组合的概念是从置换公式推导出来的。 下面是对应的公式:

  • n! - 数值 n 的阶乘

  • P(n,k) = n! / ( n - k )! — 从 N 个元素到 K 个元素的排列

  • С(n,k) = n! / ( k! * ( n - k )! ) — N 个元素乘 K 个元素的组合

阶乘是所有以 1 开头并以 n 结尾的自然数的乘积,而 “0! = 1"。 也就是说,零的阶乘等于一。 在该情况下,它只是规则的一个例外,但我还没有看到这种例外会干扰计算或令算法复杂化的案例。

排列稍微复杂一些。 想象一下,您有一副牌,而这副牌只含有一定数量的牌。 进行一个简单的实验:洗牌并从整副牌里以完全任意的方式抽出几张牌,按照我们抽取顺序将它们放在桌子上。 所以,排列是这个实验所有可能产物的数量,而每张牌的顺序也被认为是特定产物的唯一标识符。 这种排列适用于任何需要的元素。

第一张牌可以用 n 种不同的方式从牌组中取出,第二张则能以 “n-1” 种方式取出,因为第一张牌已不再在牌组中。 依此类推,直到第 “n-k-1” 张牌。 为了获得所有可能的排列数量,我们需要将所有数字从 “n-k-1” 乘以 “n”。 此过程类似于阶乘。 如果我们取 “n!” 并将其除以 “n-k” 因子,我们将得到与 “(n-k)!” 完全相等的原始乘积。 这就是我们如何得到排列公式。

组合公式稍微复杂一些,但也能轻松推导出来。 我们已拥有所有可能的排列,但元素的顺序并不重要 — 只有在其中的牌才重要。 现在,我们需要找到此类案例的数量,每个案例都有不同的一套牌。 事实上,每个排列已经包含这些独有集合之一,但我们不需要它们的全部。 我们来改变逻辑,尝试收集所有可能组合的所有排列:由它得出,如果我们取用一个组合,无论我们如何重新排列其中的元素,它们都是唯一的。 甚或,如果我们取用所有独有的组合,并在其中生成所有可能的排列,我们会得到以下结果:

  • P(n,k) = C(n,k) * P(k,k)

组合中所有可能的独有排列的数量等于 “P(k,k)”,因为我们需要从 “k” 个变体的所有可能排列中收集 “k” 个变体。 将方程的两部分同时除以 “P(k,k)”,我们得到所需的组合公式:

  • C(n,k) = P(n,k)/P(k,k) = n! / ( k! * ( n - k )! )

排列和组合都广泛用于各种概率论问题。 当在实际应用里运用它时,则组合对我们来说最有用。 组合可构建分形函数,并用于各种目的。 也许称它们为递归更正确,但出于某种原因,我将这些函数称为分形(可能是因为它们确实是分形的,因此它不仅是递归,而是一整棵调用树)。

伯努利(Bernoulli)预划案

在继续研究此类分形函数之前,我们先来研究著名的伯努利公式。 假设我们有一系列相同的实验,需要我们重复若干次。 实验应表现为事件以一定的概率出现或不出现。 甚至,假设我们想要查找在 “n” 个实验链中我们的事件恰好出现 “k” 次的概率。 伯努利公式可以回答这个问题:

  • P = C(n,k)*Pow(p,k)*Pow(q,n-k) — 伯努利公式

  • p — 单次实验结果中事件发生的概率

  • q = 1 - p — 实验结果中事件不会发生的概率

还记得之前为概率链推导出的公式吗? 我们将其扩展为任意超大链长度:

  • P(n) = P(H[1]|O) * P(H[2]|H[1]) * P(H[3]|H[2]) * ... * P(H[k]|H[k-1]) * ... *P(H[n]|H[n-1])

  • n — 链中的段数

  • O — 整个产物集合;可以表示为 H[0]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值