小白也能做量化2.0

  当代量化交易的快速发展使得小白量化交易者也有了更多参与的机会。在这个领域,赫兹量化国联期货极速版为广大投资者提供了一项强大的工具,让不擅长编程的投资者也能轻松参与量化交易的乐趣。

  自定义指标生成量化策略是赫兹量化国联期货极速版的一项重要功能,为不具备编程能力的用户提供了便捷的方式来构建个性化的交易策略。通过简单的操作,用户可以根据自己的投资理念和市场观察,定制符合个性化需求的交易指标,从而形成独特的量化策略。 对于小白量化交易者来说,这项功能的易用性和灵活性成为其吸引之处。无需深厚的编程技能,只需通过可视化界面,就能快速生成符合个人需求的交易指标。

  这一点对于那些过去依赖他人编写策略代码的投资者来说,无疑是一大进步。 在使用自定义指标生成量化策略的过程中,小白量化交易者可以通过调整不同的参数、添加特定的条件,快速测试和优化自己的交易思路。这种亲身参与的体验,有助于提升投资者对市场的理解和把握,进一步增强他们的决策能力。 此外,赫兹量化国联期货极速版还提供了丰富的市场数据和实时行情分析工具,帮助用户更全面地了解市场动态,作出更为准确的交易决策。这种一站式的服务,为小白量化交易者提供了更为便捷和全面的交易环境。

   总的来说,赫兹量化国联期货极速版的自定义指标生成量化策略功能为小白量化交易者打开了一扇更为广阔的投资大门。通过简单的操作,用户可以轻松定制符合自身需求的交易策略,提升交易体验,实现更好的投资回报。这一工具的引入,无疑为广大小白量化交易者提供了更多参与市场的机会,使他们能够更好地享受到量化交易的乐趣和收益。

小白量化学习-自创指标设计 一、准备工作 1、首先把“HP_formula.py”文件复制到自己的工程目录中。 2、在新文件开始增加下面4条语句。 import numpy as np import pandas as pd from HP_formula import * import tushare as ts 二、对数据预处理 我们采用与tushare旧股票数据格式。 #首先要对数据预处理 df = ts.get_k_data('600080',ktype='D') mydf=df.copy() CLOSE=mydf['close'] LOW=mydf['low'] HIGH=mydf['high'] OPEN=mydf['open'] VOL=mydf['volume'] C=mydf['close'] L=mydf['low'] H=mydf['high'] O=mydf['open'] V=mydf['volume'] 三、仿通达信或大智慧公式 通达信公式转为python公式的过程。 1.‘:=’为赋值语句,用程序替换‘:=’为python的赋值命令‘='。 2.‘:’为公式的赋值带输出画线命令,再替换‘:’为‘=’,‘:’前为输出变量,顺序写到return 返回参数中。 3.全部命令转为英文大写。 4.删除绘图格式命令。 5.删除掉每行未分号; 。 6.参数可写到函数参数表中.例如: def KDJ(N=9, M1=3, M2=3): 例如通达信 KDJ指标公式描述如下。 参数表 N:=9, M1:=3, M2:=3 RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100; K:SMA(RSV,M1,1); D:SMA(K,M2,1); J:3*K-2*D; # Python的KDJ公式 def KDJ(N=9, M1=3, M2=3): RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100 K = SMA(RSV,M1,1) D = SMA(K,M2,1) J = 3*K-2*D return K, D, J #----------------------------------- #根据上面原理,我们把大智慧RSI指标改 # 为Python代码,如下。 def RSI(N1=6, N2=12, N3=24): """ RSI 相对强弱指标 """ LC = REF(CLOSE, 1) RSI1 = SMA(MAX(CLOSE - LC, 0), N1, 1) / SMA(ABS(CLOSE - LC), N1, 1) * 100 RSI2 = SMA(MAX(CLOSE - LC, 0), N2, 1) / SMA(ABS(CLOSE - LC), N2, 1) * 100 RSI3 = SMA(MAX(CLOSE - LC, 0), N3, 1) / SMA(ABS(CLOSE - LC), N3, 1) * 100 return RSI1, RSI2, RSI3 四、使用公式并绘图 #假定我们使用RSI指标 r1,r2,r3=RSI() mydf = mydf.join(pd.Series( r1,name='RSI1')) mydf = mydf.join(pd.Series( r2,name='RSI2')) mydf = mydf.join(pd.Series( r3,name='RSI3')) mydf['S80']=80 #增加上轨80轨迹线 mydf['X20']=20 #增加下轨20轨迹线 mydf=mydf.tail(100) #显示最后100条数据线 #下面是绘线语句 mydf.S80.plot.line() mydf.X20.plot.line() mydf.RSI1.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) 不懂就看我的博客 https://blog.csdn.net/hepu8/article/details/93378543
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值