ICML 2018 深度学习论文及代码集锦(3)

本文汇总了ICML 2018上关于深度学习的几篇重要论文,包括GAN的稳定性研究、正交循环神经网络、设备放置优化、卡方GAN、线性网络全局最优理论以及深度预测编码网络。每篇论文都提供了实验对比和部分代码实现链接,是理解这些最新研究成果的好资源。
摘要由CSDN通过智能技术生成

[1] Which Training Methods for GANs do actually Converge?

Lars Mescheder, Andreas Geiger, Sebastian Nowozin

MPI, ETH, Microsoft Research

http://proceedings.mlr.press/v80/mescheder18a/mescheder18a.pdf

不同方法的收敛特性对比如下

640?wx_fmt=png

基于梯度下降的GAN优化算法通常不收敛的示例如下

640?wx_fmt=png

Dirac-GAN定义如下

640?wx_fmt=png

不同方法对比如下

640?wx_fmt=png

几种方法的收敛特性对比如下

640?wx_fmt=png

640?wx_fmt=png

代码地址

https://github.com/LMescheder/GAN_stability


             smiley_12.png我是分割线smiley_12.png


[2] Orthogonal Recurrent Neural Networks with Scaled Cayley Transform

Kyle E. Helfrich, Devin Willmott, Qiang Ye

University of Kentucky

http://proceedings.mlr.press/v80/helfrich18a/helfrich18a.pdf

各方法对比如下

640?wx_fmt=png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值