[1] Complex Gated Recurrent Neural Networks
Moritz Wolter, Angela Yao
University of Bonn, National University of Singapore
https://papers.nips.cc/paper/8253-complex-gated-recurrent-neural-networks.pdf
复数在数字信号处理中起了非常重要的作用,但是复数表示在深度学习结构中很少出现。
循环神经网络,在时间序列和序贯信息中广泛使用,这种网络结合复数表示会从中得益许多。这篇文章提出一种新的复数域门限循环单元,这种单元利用门限机制结合了复数域和保范数的状态变换。所得RNN稳定性非常好,并且收敛性也较好,在人工合成的记忆以及加法任务中表现卓越,在人类姿势预测中效果也较好。
该论文的主要贡献如下
相关导数计算方式及链式法则如下
激活函数Hirose表达式如下
激活函数modRELU的表达式如下
两种函数的等值表面图如下
本文方法跟其他两种方法在两种问题上的效果对比如下
其中1对应的论文为
Unitary evolution recurrent neural networks, ICML 2016
4对应的论文为
Learning phrase representations using RNN encoder–decoder for statistical machine translation, EMNLP 2014
40对应的论文为
Full-capacity unitary recurrent neural networks, NIPS 2016
代码地址
https://github.com/stwisdom/urnn
非线性与保范数状态转换矩阵对cgRNN的影响对比如下
人类姿势识别中的效果对比如下
其中