NIPS论文系列|复数域RNN,深层生成模型,DRL在MDP中的应用(已开源)

本文介绍了三篇NIPS论文,涉及复数域RNN在序列任务中的优势,深度生成模型的偏见和泛化能力的实证研究,以及深度反应策略在MDP规划中的转移学习。复数门限循环单元提高了RNN的稳定性和性能,而对深度生成模型的分析揭示了其在图像生成中的偏差和泛化模式。此外,提出了一种无需大量额外训练即可在新MDP实例中迁移策略的方法。
摘要由CSDN通过智能技术生成

[1] Complex Gated Recurrent Neural Networks

Moritz Wolter, Angela Yao

University of Bonn, National University of Singapore

https://papers.nips.cc/paper/8253-complex-gated-recurrent-neural-networks.pdf

复数在数字信号处理中起了非常重要的作用,但是复数表示在深度学习结构中很少出现。

循环神经网络,在时间序列和序贯信息中广泛使用,这种网络结合复数表示会从中得益许多。这篇文章提出一种新的复数域门限循环单元,这种单元利用门限机制结合了复数域和保范数的状态变换。所得RNN稳定性非常好,并且收敛性也较好,在人工合成的记忆以及加法任务中表现卓越,在人类姿势预测中效果也较好。

该论文的主要贡献如下

相关导数计算方式及链式法则如下

激活函数Hirose表达式如下

激活函数modRELU的表达式如下

两种函数的等值表面图如下

本文方法跟其他两种方法在两种问题上的效果对比如下

其中1对应的论文为

Unitary evolution recurrent neural networks, ICML 2016

4对应的论文为

Learning phrase representations using RNN encoder–decoder for statistical machine translation, EMNLP 2014

40对应的论文为

Full-capacity unitary recurrent neural networks, NIPS 2016

代码地址

https://github.com/stwisdom/urnn

非线性与保范数状态转换矩阵对cgRNN的影响对比如下

人类姿势识别中的效果对比如下

其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值