Joint Optimization of Tree-based Index and Deep Model for Recommender Systems
Han Zhu, Daqing Chang, Ziru Xu, Pengye Zhang, Xiang Li, Jie He, Han Li, Jian Xu, Kun Gai
Alibaba Group, Tsinghua University
https://proceedings.neurips.cc/paper/2019/file/1c6a0198177bfcc9bd93f6aab94aad3c-Paper.pdf
大规模工业界推荐系统通常面临计算问题,这是因为语料非常大。
为了在限定响应时间的前提下检索并推荐最相关的商品给用户,借助于高效的索引结构通常是比较有效并且实用的解决方案。先前的工作,基于树的深层模型(TDM),利用树索引大幅提高了推荐准确性。
将商品以树分层的方式建立索引,在树中,以满足最大堆属性的形式来训练用户节点偏好预测模型,TDM相对语料规模的计算复杂度是对数阶的。这就使得在候选集检索和推荐中可以利用任意高级的模型。
在基于树的推荐方法中,树索引和用户节点偏好预测模型的质量基本上决定了推荐的准确性。树索引和偏好预测模型的学习具有依赖关系。这篇文章的目的在于共同学习索引结构和用户偏好预测模型。
作者们所提出的联合优化框架中,索引和用户偏好预测模型的学习在统一性能度量下来实现。另外,作者们利用分层索引提出一种新的分层用户偏好表示。
两个大规模真实数据集上的实验评估表明,作者们所提方法显著提升了推荐准确性。广告展示平台中的线上A/B测试结果表明生产环境中所提方法的有效性。
基于商品的协同过滤局限性如下
DIN、DIEN以及XdeepFM等模型不适合用于产生候选商品
这篇文章的主要贡献如下
TDM简介如下
TDM结构图示如下