CERC2017 I: Intrinsic Interval 线段树

该博客介绍了CERC2017I竞赛中的一道问题,涉及如何使用线段树解决寻找最小连续数区间的问题。文章阐述了好区间的定义,并通过反证法证明了两个好区间的交集仍为好区间。作者提出固定左侧边界l,寻找右侧满足条件的最小边界r,并利用数组tmp来记录每个位置后面满足条件的连续数个数。通过线段树查找最大值并更新tmp数组,实现了从前往后统计的方法。
摘要由CSDN通过智能技术生成

CERC2017I
题目是求最小的好区间
好区间就是一段区间都是连续的数 对于好区间显然有个数据结构叫析和树是可以求解的
但是我们用线段树怎么处理呢
首先我们知道 好区间 l 到 r是满足区间maxx-区间minn = r - l
然后我们又知道 两个好区间的交 一定也是好区间
反证法:假如这个交不是好区间 差几个数 那么这几个数如果在左边 那么和右边的数就不能构成好区间
所以两个好区间的交也一定是好区间
这样的话我们可以固定每个l不动 去右边找满足的最小的r(使得 l r包括询问区间)
用一个数组 tmp[i] 代表 i 后面有几个满足 那么 tmp[i] = r- i
tmp[i]+i = r;
所以你让tmp[i] 一开始= i,
每次找线段树最大值是否等于 r
因为每个数只有对相邻的数有贡献 而且我们是从前往后统计
所以代码有这句话

		if(arr[i]>1&&p[arr[i]-1]<=i) sgt::update(1,1,n,1,p[arr[i]-1],1);
        if(arr[i]<n&&p[arr[i]+1]<=i) sgt::update(1,1,n,1,p[arr[i]+1],1);
/*
    created by ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
//ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//#pragma comment(linker, "/STACK:10240000,10240000")
using namespace std;

#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))

typedef pair<int,int> pll;
typedef long long ll;
typedef unsigned long long ull;
const ull hash1 = 201326611;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod =  (int)1e9+7;

ll gcd(ll a,ll b){
   return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){
   int ans=1;while(b){
   if(b&1) ans=(ans*a)%mod;a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值