深度学习图像压缩_2-论文:Learning Convolutional Networks for Content-weighted Image Compression

文章的创新点是在量化中加入了Importance Map,让模型自适应地选择重要的区域,整体结构为:
在这里插入图片描述
在编码器的输出端有两个分支。一个分支类似传统的自编码器,用于输出特征,并量化和解码。另一个分支作用是产生一个Importance Map,进而产生一个mask,对特征进行更好地量化。

1、二值化量化

对于编码器输出的特征,首先进行二值化,对每个值都量化为0或1,得到一个形状为HxWxC的特征图。为了保证反向传播中的可导,在反向传播使用线性模型代替二值化,公式可以查阅论文或者博客

2、Importance Map

对于形状为HxWxC二值特征矩阵,实际上可以理解为特征图有HxW个点,每个点用C位二进制表示。实际上,更合理的方式是,根据每个点重要程度的不同,使用不同位的二进制数来表示。Importance Map可以理解为是实现这个功能,对于重要的点保留更多的位,不重要的点使用更少的位。
对Importance Map进行可视化,可以发现在边缘区域需要保留更多的位,这与经验一致。
在这里插入图片描述
Importance Map转为mask以及与二值特征相乘的公式可以在论文中查阅,此处不再贴出。

3、Loss函数设计

这里的Loss使用了传统的率失真目标,分为失真loss和码率loss。
在这里插入图片描述
失真loss衡量解码图像与真实图像差异,此处直接使用L2距离。
在这里插入图片描述
码率loss衡量编码图像需要的比特数。此处由于Importance Map直接影响了熵编码前的比特数,所以使用Importance Map值之和来衡量码率,同时设计阈值r控制码率。
在这里插入图片描述

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值