这部分可能会考大题
二重积分的概念
积分微元是平面上的小块 dσ
定义

几何意义
曲顶柱体的体积
性质
不等式性质
中值定理

二重积分的计算
1)直角坐标系 xy,yx,或者交换次序
2)极坐标
3) 利用奇偶性
4) 轮换对称性
区域D如果x,y互换,区域D不变,那么则有∫∫ f(x) dσ = ∫∫ f(y) dσ
例题
这部分主要就是考交换积分次序和计算,
解法很固定,都是先画图,然后选择4种计算方法
直接做不好做,交换积次序
极坐标计算
这题考的奇偶性,画出图形,是一个三角形,主要思想就是通过添加辅助线,将图形划分为两个关于x和y轴对称的图形,利用奇函数性质化简
奇函数性质化简,画出图像,使用极坐标,注意三角函数部分的化简,点火公式运用
绝对值的处理,划分区域成D1,D2,D2计算可以用正方形-D1
这题第一个想法是用极坐标计算,但是分子一个x不好计算,
又发现区域D是一个圆,考虑轮换对称性,加一个f(y,x)
将分母的x+y消掉
方法二,直接计算
技巧:
θ=Π/2 - t
在三角函数里,利用
区间不动的变量代换: 令x=a+b-t
再利用诱导公式,cos转换成sin,相加进行化简
有点像轮换对称性的思想
考点是二重积分的几何意,在y-x>0区域D种, ∫∫ y-x dσ >0,
这题是函数fxy不变在不同区域种,
另一种考法是不等式性质,在区域D不变,考虑不同的fxy