张宇1000题高等数学 第十四章 二重积分

目录

B B B

8.设 f ( x , y ) f(x,y) f(x,y)为连续函数, f ( 0 , 0 ) f(0,0) f(0,0)已知,则 I = lim ⁡ t → 0 + 1 π t 2 ∬ D f ( x , y ) d σ = I=\lim\limits_{t\to0^+}\cfrac{1}{\pi t^2}\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma= I=t0+limπt21Df(x,y)dσ=______,其中平面区域 D = { ( x , y ) ∣ x 2 + y 2 ⩽ t 2 } D=\{(x,y)|x^2+y^2\leqslant t^2\} D={ (x,y)x2+y2t2}

  因 f ( x , y ) f(x,y) f(x,y) D D D上连续,由积分中值定理可知,在 D D D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使 ∬ D f ( x , y ) d σ = f ( ξ , η ) σ = π t 2 f ( ξ , η ) \displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma=f(\xi,\eta)\sigma=\pi t^2f(\xi,\eta) Df(x,y)dσ=f(ξ,η)σ=πt2f(ξ,η)
  因 ( ξ , η ) (\xi,\eta) (ξ,η) D D D上,所以当 t → 0 + t\to0^+ t0+时, ( ξ , η ) → ( 0 , 0 ) (\xi,\eta)\to(0,0) (ξ,η)(0,0),于是 lim ⁡ t → 0 + 1 π t 2 ∬ D f ( x , y ) d σ = lim ⁡ ( ξ , η ) → ( 0 , 0 ) f ( ξ , η ) = f ( 0 , 0 ) \lim\limits_{t\to0^+}\cfrac{1}{\pi t^2}\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma=\lim\limits_{(\xi,\eta)\to(0,0)}f(\xi,\eta)=f(0,0) t0+limπt21Df(x,y)dσ=(ξ,η)(0,0)limf(ξ,η)=f(0,0)。(这道题主要利用了积分中值定理求解

16.计算下列各题。

(6) ∬ D e y x + y d σ , D = { ( x , y ) ∣ 0 ⩽ y ⩽ 1 − x , y ⩽ x } . \displaystyle\iint\limits_{D}e^{\frac{y}{x+y}}\mathrm{d}\sigma,D=\{(x,y)|0\leqslant y\leqslant1-x,y\leqslant x\}. Dex+yydσ,D={ (x,y)0y1x,yx}.

  积分区域如下图所示,在极坐标中,

在这里插入图片描述

∬ D e y x + y d σ = ∫ 0 π 4 d θ ∫ 0 1 cos ⁡ θ + sin ⁡ θ e sin ⁡ θ cos ⁡ θ + sin ⁡ θ r d r = 1 2 ∫ 0 π 4 e sin ⁡ θ cos ⁡ θ + sin ⁡ θ ( 1 cos ⁡ θ + sin ⁡ θ ) 2 d θ = 1 2 ∫ 0 π 4 e sin ⁡ θ cos ⁡ θ + sin ⁡ θ d ( sin ⁡ θ cos ⁡ θ + sin ⁡ θ ) = 1 2 e sin ⁡ θ cos ⁡ θ + sin ⁡ θ ∣ 0 π 4 = 1 2 ( e − 1 ) . \begin{aligned} \displaystyle\iint\limits_{D}e^{\frac{y}{x+y}}\mathrm{d}\sigma&=\displaystyle\int^{\frac{\pi}{4}}_0\mathrm{d}\theta\displaystyle\int^{\frac{1}{\cos\theta+\sin\theta}}_0e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}r\mathrm{d}r\\ &=\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}\left(\cfrac{1}{\cos\theta+\sin\theta}\right)^2\mathrm{d}\theta\\ &=\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}\mathrm{d}\left(\cfrac{\sin\theta}{\cos\theta+\sin\theta}\right)\\ &=\cfrac{1}{2}e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}\biggm\vert^{\frac{\pi}{4}}_0=\cfrac{1}{2}(\sqrt{e}-1). \end{aligned} Dex+yydσ=04πdθ0cosθ+sinθ1ecosθ+sinθsinθrdr=2104πecosθ+sinθsinθ(cosθ+sinθ1)2dθ=2104πe

本书精心命制和整合了大约1000考研学复习的目,其主要来源是: (1)与考研学命密切相关的重要资料.这里包括考研学命前的全国征、部分考研的备考(所谓考研学B卷考)、命人退下来以后命制的目、某些全国大学学教学基地的考试库等,这些一般会综合了多个知识点,有一定的难度和区分度. (2)前苏联、全国、各省市大学生学竞赛试的改编.对经典的大学学竞赛如何进行改编,使其适合考研的风格和特点,这既是对未来考的预测(因为这些竞赛中有很多目是“潜在的考试”),也是本书的一大特色.试改编是颇费一番周折的,本书中一些重要目后的“注”,看似外之话,但是字斟句酌、涵义深刻,请读者仔细品味,必会有所收获.当然,基于竞赛基础,这些一般也会是综合,难度、区分度大. (3)作者在一线教学中编写和积累的经典目.这里,有些目考查的是非常重要的基础知识,有些目考查的是学生易错的、易混淆的知识,还有些目,本应是在课堂上讲授给学生的,但是无奈于课堂时间有限,很多精彩的好没有机会在课上详细解释,也将此选编到本书中,供学生课后巩固所学、增长见识之用.同时也给没有上我的课程的读者提供一个有价值的习资料.这里的目除了有一定难度的综合外,还有些简单,难度不,但对学生的区分是明显的.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值