目录
- B B B组
-
- 8.设 f ( x , y ) f(x,y) f(x,y)为连续函数, f ( 0 , 0 ) f(0,0) f(0,0)已知,则 I = lim t → 0 + 1 π t 2 ∬ D f ( x , y ) d σ = I=\lim\limits_{t\to0^+}\cfrac{1}{\pi t^2}\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma= I=t→0+limπt21D∬f(x,y)dσ=______,其中平面区域 D = { ( x , y ) ∣ x 2 + y 2 ⩽ t 2 } D=\{(x,y)|x^2+y^2\leqslant t^2\} D={ (x,y)∣x2+y2⩽t2}。
- 16.计算下列各题。
- 19.计算 I = ∬ x + y ⩽ 1 x + y 3 d x d y I=\displaystyle\iint\limits_{\sqrt{x}+\sqrt{y}\leqslant1}\sqrt[3]{\sqrt{x}+\sqrt{y}}\mathrm{d}x\mathrm{d}y I=x+y⩽1∬3x+ydxdy。
- C C C组
-
- 2.设 p ( x ) p(x) p(x)在 [ a , b ] [a,b] [a,b]上非负且连续, f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)在 [ a , b ] [a,b] [a,b]上连续且相同的单调性,其中 D = { ( x , y ) ∣ a ⩽ x ⩽ b , a ⩽ y ⩽ b } D=\{(x,y)|a\leqslant x\leqslant b,a\leqslant y\leqslant b\} D={ (x,y)∣a⩽x⩽b,a⩽y⩽b},比较 I 1 = ∬ D p ( x ) f ( x ) p ( y ) g ( y ) d x d y , I 2 = ∬ D p ( x ) f ( y ) p ( y ) g ( y ) d x d y I_1=\displaystyle\iint\limits_{D}p(x)f(x)p(y)g(y)\mathrm{d}x\mathrm{d}y,I_2=\displaystyle\iint\limits_{D}p(x)f(y)p(y)g(y)\mathrm{d}x\mathrm{d}y I1=D∬p(x)f(x)p(y)g(y)dxdy,I2=D∬p(x)f(y)p(y)g(y)dxdy的大小,并说明理由。
- 6.设函数 f ( x ) f(x) f(x)为 [ 0 , 1 ] [0,1] [0,1]上的连续函数,且 0 ⩽ f ( x ) < 1 0\leqslant f(x)<1 0⩽f(x)<1,利用二重积分证明不等式: ∫ 0 1 f ( x ) 1 − f ( x ) d x ⩾ ∫ 0 1 f ( x ) d x 1 − ∫ 0 1 f ( x ) d x \displaystyle\int^1_0\cfrac{f(x)}{1-f(x)}\mathrm{d}x\geqslant\cfrac{\displaystyle\int^1_0f(x)\mathrm{d}x}{1-\displaystyle\int^1_0f(x)\mathrm{d}x} ∫011−f(x)f(x)dx⩾1−∫01f(x)dx∫01f(x)dx。
- 写在最后
B B B组
8.设 f ( x , y ) f(x,y) f(x,y)为连续函数, f ( 0 , 0 ) f(0,0) f(0,0)已知,则 I = lim t → 0 + 1 π t 2 ∬ D f ( x , y ) d σ = I=\lim\limits_{t\to0^+}\cfrac{1}{\pi t^2}\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma= I=t→0+limπt21D∬f(x,y)dσ=______,其中平面区域 D = { ( x , y ) ∣ x 2 + y 2 ⩽ t 2 } D=\{(x,y)|x^2+y^2\leqslant t^2\} D={ (x,y)∣x2+y2⩽t2}。
解 因 f ( x , y ) f(x,y) f(x,y)在 D D D上连续,由积分中值定理可知,在 D D D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使 ∬ D f ( x , y ) d σ = f ( ξ , η ) σ = π t 2 f ( ξ , η ) \displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma=f(\xi,\eta)\sigma=\pi t^2f(\xi,\eta) D∬f(x,y)dσ=f(ξ,η)σ=πt2f(ξ,η)。
因 ( ξ , η ) (\xi,\eta) (ξ,η)在 D D D上,所以当 t → 0 + t\to0^+ t→0+时, ( ξ , η ) → ( 0 , 0 ) (\xi,\eta)\to(0,0) (ξ,η)→(0,0),于是 lim t → 0 + 1 π t 2 ∬ D f ( x , y ) d σ = lim ( ξ , η ) → ( 0 , 0 ) f ( ξ , η ) = f ( 0 , 0 ) \lim\limits_{t\to0^+}\cfrac{1}{\pi t^2}\displaystyle\iint\limits_{D}f(x,y)\mathrm{d}\sigma=\lim\limits_{(\xi,\eta)\to(0,0)}f(\xi,\eta)=f(0,0) t→0+limπt21D∬f(x,y)dσ=(ξ,η)→(0,0)limf(ξ,η)=f(0,0)。(这道题主要利用了积分中值定理求解)
16.计算下列各题。
(6) ∬ D e y x + y d σ , D = { ( x , y ) ∣ 0 ⩽ y ⩽ 1 − x , y ⩽ x } . \displaystyle\iint\limits_{D}e^{\frac{y}{x+y}}\mathrm{d}\sigma,D=\{(x,y)|0\leqslant y\leqslant1-x,y\leqslant x\}. D∬ex+yydσ,D={ (x,y)∣0⩽y⩽1−x,y⩽x}.
解 积分区域如下图所示,在极坐标中,
∬ D e y x + y d σ = ∫ 0 π 4 d θ ∫ 0 1 cos θ + sin θ e sin θ cos θ + sin θ r d r = 1 2 ∫ 0 π 4 e sin θ cos θ + sin θ ( 1 cos θ + sin θ ) 2 d θ = 1 2 ∫ 0 π 4 e sin θ cos θ + sin θ d ( sin θ cos θ + sin θ ) = 1 2 e sin θ cos θ + sin θ ∣ 0 π 4 = 1 2 ( e − 1 ) . \begin{aligned} \displaystyle\iint\limits_{D}e^{\frac{y}{x+y}}\mathrm{d}\sigma&=\displaystyle\int^{\frac{\pi}{4}}_0\mathrm{d}\theta\displaystyle\int^{\frac{1}{\cos\theta+\sin\theta}}_0e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}r\mathrm{d}r\\ &=\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}\left(\cfrac{1}{\cos\theta+\sin\theta}\right)^2\mathrm{d}\theta\\ &=\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}\mathrm{d}\left(\cfrac{\sin\theta}{\cos\theta+\sin\theta}\right)\\ &=\cfrac{1}{2}e^{\frac{\sin\theta}{\cos\theta+\sin\theta}}\biggm\vert^{\frac{\pi}{4}}_0=\cfrac{1}{2}(\sqrt{e}-1). \end{aligned} D∬ex+yydσ=∫04πdθ∫0cosθ+sinθ1ecosθ+sinθsinθrdr=21∫04πecosθ+sinθsinθ(cosθ+sinθ1)2dθ=21∫04πe