LLMs 其他 Trick

huggingface 下载不了模型问题?

  • from modelscope.hub.snapshot_download import snapshot_download
    model_dir = snapshot_download('damo/nlp_xlmr_named-entity-recognition_viet- ecommerce-title', cache_dir='path/to/local/dir', revision='v1.0.1')
    方法一:在modelscope 下载你想要的模型
  • 方法二:大语言模型下载站

HuggingFace.co资源下载网站,为AI开发者提供模型镜像加速服务,通过下载器可以达到10M/s的下载速度,解 决大模型下载时间长、经常断线、需要反复重试等问题,实现镜像加速、断点续传、无人值守下载,

03-08
### LLMS 技术介绍 大型语言模型(LLMs)代表了一类先进的人工智能算法,这些模型通过处理大量文本数据来学习自然语言的理解与生成能力。这类技术并非万能解决方案,而应被视作一种能够与其他工具协同工作的强大资源[^1]。 #### 特征描述 - **多阶段增强**:某些版本的 LLMs 如 ChatGLM3 实现了分层优化策略,从而提高了性能表现。 - **多模态理解**:除了传统的基于文本的任务外,部分改进型 LLMs 还可以理解和处理图像、音频等多种形式的数据输入。 - **Agent Tuning 技术**:这项特性允许开发者根据特定应用场景微调预训练好的基础模型,使其更贴合实际需求。 ### 应用实例展示 为了帮助用户更好地利用 LLMs 的潜力,在实践中往往需要借助精心设计的提示语句——即 Prompt Engineering 来引导模型产出期望的结果[^3]。下面给出一段简单的 Python 代码片段用于演示如何向支持对话功能的服务发送请求: ```python import requests def send_chat_request(messages, api_key): url = 'https://api.example.com/v1/chat/completions' headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json', } data = {'messages': messages} response = requests.post(url, json=data, headers=headers) return response.json() if __name__ == '__main__': user_message = [{'role': 'user', 'content': '你好'}] bot_reply = send_chat_request(user_message, '<your_api_key>') print(bot_reply['choices'][0]['message']['content']) ``` 此段脚本展示了怎样构建并提交一次包含用户消息的对象给到具备聊天功能的大规模语言模型API端点,并获取其回复内容[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Echoes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值