一款优秀的中文识别库——ocr

CnOCR是一个Python3的OCR工具包,能识别简体中文、繁体中文(部分)、英文和数字。它提供了多种预训练模型,并支持竖排文字识别。安装简单,使用方便,可以通过调整参数优化识别效果。对于排版简单的印刷体图片,可以使用'naive_det'模型以提高速度。更多详细信息和使用示例可在官方文档中查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CnOCR 是 Python 3 下的文字识别(Optical Character Recognition,简称OCR)工具包,支持简体中文、繁体中文(部分模型)、英文和数字的常见字符识别,支持竖排文字的识别。自带了20+个训练好的识别模型,适用于不同应用场景,安装后即可直接使用。同时,CnOCR也提供简单的训练命令供使用者训练自己的模型。欢迎加入 交流群。
github地址:https://github.com/breezedeus/cnocr

安装简单

pip install cnocr

各种场景的调用示例
常见的图片识别
所有参数都使用默认值即可。如果发现效果不够好,多调整下各个参数看效果,最终往往能获得比较理想的精度。

from cnocr import CnOcr

img_fp = './docs/examples/huochepiao.jpeg'
ocr = CnOcr()  # 所有参数都使用默认值
out = ocr.ocr(img_fp)

print(out)

在这里插入图片描述
排版简单的印刷体截图图片识别
针对 排版简单的印刷体文字图片,如截图图片,扫描件图片等,可使用 det_model_name=‘naive_det’,相当于不使用文本检测模型,而使用简单的规则进行分行。

使用 det_model_name=‘naive_det’ 的最大优势是速度快,劣势是对图片比较挑剔。如何判断是否该使用此检测模型呢?最简单的方式就是拿应用图片试试效果,效果好就用,不好就不用。

from cnocr import CnOcr

img_fp = './docs/examples/multi-line_cn1.png'
ocr = CnOcr(det_model_name='naive_det') 
out = ocr.ocr(img_fp)

print(out)

识别结果:
在这里插入图片描述

更多详见:
https://cnocr.readthedocs.io/zh/latest/

具体的测试,以后再写,先做个记录。

### OCR文字识别产品交互设计的最佳实践 #### 用户界面简洁直观 优秀OCR文字识别工具应具备简单易懂的操作界面,使初次使用者也能迅速上手。界面上应当突出显示主要功能按钮,比如上传文件、启动扫描等选项,并提供清晰的文字说明或图标指引[^1]。 #### 实时预览与反馈机制 当用户提交待处理材料后,程序应及时响应并展示初步结果给用户查看。这不仅有助于确认输入无误,而且让用户感受到系统的高效运作。对于可能出现的问题(如模糊不清的字迹),也应在第一时间给出提示,以便于及时调整拍摄角度或光线条件[^2]。 #### 自动化程度高且灵活可控 理想情况下,整个过程尽可能实现全自动化——从接收图像到最终输出文本都无需人工干预;然而,在某些特殊场合下,则需保留适当的手动调节权限供高级用户微调参数设置,例如设定特定字体样式偏好或是指定感兴趣区域范围内的精确度要求[^3]。 #### 多平台兼容性强 考虑到不同设备间的差异性,开发团队应该致力于打造跨平台解决方案,确保无论是在桌面端还是移动端都能获得一致性的良好体验。同时也要注意优化针对各类屏幕尺寸的设计布局方案,从而适应更多样化的应用场景需求[^4]。 #### 提升准确性与速度 除了美观实用之外,性能表现同样是衡量一款优秀OCR软件的重要标准之一。通过不断改进算法结构来增强字符辨识精度的同时加快运算效率,可以有效缩短等待时间,进一步改善整体使用感受。此外,还可以引入机器学习模型来进行后续校验修正工作,降低因环境因素造成的误差概率[^5]。 ```python import pytesseract from PIL import Image def ocr_with_feedback(image_path): image = Image.open(image_path) # 显示原图作为实时预览的一部分 image.show() text = pytesseract.image_to_string(image, lang='chi_sim') print("识别的结果如下:") print(text) # 调用函数测试 ocr_with_feedback('example_image.png') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值