1 Pandas介绍
- 2008年WesMcKinney开发出的库
- 专门用于数据挖掘的开源python库
- 以Numpy为基础,借力Numpy模块在计算方面性能高的优势
- 基于matplotlib,能够简便的画图
- 独特的数据结构
Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?
- 增强图表可读性
- 便捷的数据处理能力
- 读取文件方便
- 封装了Matplotlib、Numpy的画图和计算
2 Pandas数据结构
Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex(老版本中叫Panel )。
其中Series是一维数据结构,DataFrame是二维的表格型数据结构,MultiIndex是三维的数据结构。
2.1 Series
Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。
2.1.1 Series的创建
# 导入pandas
import pandas as pd
pd.Series(data=None, index=None, dtype=None)
-
参数:
- data:传入的数据,可以是ndarray、list等
- index:索引,必须是唯一的,且与数据的长度相等。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
- dtype:数据的类型
-
指定索引创建:
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])
- 通过字典数据创建
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
color_count
2.1.2 Series的属性
为了更方便地操作Series对象中的索引和数据,Series中提供了两个属性index和values
- index
color_count.index
# 结果
Index(['blue', 'green', 'red', 'yellow'], dtype='object')
- values
color_count.values
# 结果
array([ 200, 500, 100, 1000])
当然也可以使用索引来获取数据:
color_count[2]
# 结果
100
2.2 DataFrame
DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引。
- 行索引,表明不同行,横向索引,叫index,0轴,axis=0
- 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1
2.2.1 DataFrame的创建
# 导入pandas
import pandas as pd
pd.DataFrame(data=None, index=None, columns=None)
-
参数:
- index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
- columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
举例:创建学生成绩表
# 生成10名同学,5门功课的数据
score = np.random.randint(40, 100, (10, 5))
# 结果
array([[46, 93, 49, 70, 53],
[42, 86, 65, 50, 87],
[41, 74, 44, 87, 64],
[62, 57, 45, 46, 86],
[82, 46, 72, 85, 63],
[82, 77, 61, 55, 41],
[48, 41, 48, 52, 58],
[90, 53, 95, 96, 78],
[77, 49, 51, 76, 56],
[79, 91, 75, 95, 66]])
但是这样的数据形式很难看到存储的是什么的样的数据,可读性比较差!!
问题:如何让数据更有意义的显示?
# 使用Pandas中的数据结构
score_df = pd.DataFrame(score)
- 增加行、列索引:
# 构造行索引序列
subjects = ["语文", "数学", "英语", "物理", "化学"]
# 构造列索引序列
stu = ['同学' + str(i) for i in range(score.shape[0])]
# 添加行索引
data = pd.DataFrame(score, columns=subjects, index=stu)
2.2.2 DataFrame的属性
- shape
data.shape
# 结果
(10, 5)
- index
DataFrame的行索引列表
data.index
# 结果
Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
- columns
DataFrame的列索引列表
data.columns
# 结果
Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')
- values
直接获取其中array的值
data.values
array([[46, 93, 49, 70, 53],
[42, 86, 65, 50, 87],
[41, 74, 44, 87, 64],
[62, 57, 45, 46, 86],
[82, 46, 72, 85, 63],
[82, 77, 61, 55, 41],
[48, 41, 48, 52, 58],
[90, 53, 95, 96, 78],
[77, 49, 51, 76, 56],
[79, 91, 75, 95, 66]])
- T
转置
data.T
输出结果:
- head(5):显示前5行内容 (很常用)
如果不补充参数,默认5行。填入参数N则显示前N行
data.head(5)
- tail(5):显示后5行内容
如果不补充参数,默认5行。填入参数N则显示后N行
data.tail(5)
2.2.3 DatatFrame索引的设置
- 修改行列索引值
stu = ["学生_" + str(i) for i in range(score_df.shape[0])]
# 必须整体全部修改
data.index = stu
注意:以下修改方式是错误的
# 错误修改方式
data.index[3] = '学生_3' # 错误
- 重设索引
- reset_index(drop=False)
- 设置新的下标索引
- drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
# 重置索引,drop=False
data.reset_index()
- 以某列值设置为新的索引
- set_index(keys, drop=True)
- keys : 列索引名成或者列索引名称的列表
- drop : boolean, default True.当做新的索引,删除原来的列
df = pd.DataFrame({'month': [1, 4, 7, 10],
'year': [2012, 2014, 2013, 2014],
'sale':[55, 40, 84, 31]})
df = df.set_index(['year', 'month'])
注:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。
创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!
Dragon少年 | 文
如果本篇博客有任何错误,请批评指教,不胜感激 !