稀疏表示综述:A Survey of Sparse Representation: Algorithms and Applications_2015(1)

A Survey of Sparse Representation: Algorithms and Applications 
ZHENG ZHANG, YONG XU, JIAN YANG, XUELONG LI, AND DAVID ZHANG

本文地址:http://blog.csdn.net/shanglianlm/article/details/46848803

I. 简介(INTRODUCTION)

这里写图片描述

II. 基础和初步概念(FUNDAMENTALS AND PRELIMINARY CONCEPTS)

两个向量  xRn  和  yRn  的内积(inner product)操作为: 
这里写图片描述 
两个矩阵  XRm×n  和  YRm×n  的内积(inner product)操作为: 
这里写图片描述 
其中  tr(A)  表示矩阵 A 的迹(trace ),即它的对角元素的和。

2D空间中不同范式的几何解释(Geometric interpretations)。 
这里写图片描述

假设  v=[v1,v2,,vn]  为 Euclidean 空间的  n  维向量,则 
这里写图片描述 
为向量  v  的  lpnorm(1p) 。其中  l0 -norm 表示为 
这里写图片描述 
假设 f(x) 是向量 x 上的  lp -norm  (p>0)  的函数,有 
这里写图片描述

不同范式的关系总结在Fig. 3。 
这里写图片描述

从Fig. 3有 
The l0-norm function is a nonconvex, nonsmooth, discontinuity, global nondifferentiable function. 
The lp-norm  (0<p<1)  is a nonconvex, nonsmooth, global nondifferentiable function. 
The l1-norm function is a convex, nonsmooth, global nondifferentiable function. 
The l2-norm function is a convex, smooth, global differentiable function.

2-D 空间中不同范式正则化的解的几何图见下图 
这里写图片描述

矩阵  XRm×n  的 Frobenius norm,  L1 -norm 和  L2 -norm or spectral norm 分别被定义为: 
这里写图片描述 
其中 δ 是奇异值操作(singular value operator)和 X 的  l2 -norm 是它的最大奇异值。 
矩阵的  l2,1 -norm 或  R1 -norm 定义为: 
这里写图片描述

如上,一个范式(vector )可以看做是一个向量 v 的长度的度量。两个向量 x 和 y,矩阵 X 和 Y 之间距离定义为: 
这里写图片描述 
即 向量 x 和 y 之间的距离用  l2 -norm 来衡量;矩阵 X 和 Y 之间的距离用 Frobenius norm 来衡量。

III. 带有不同范式正则化的稀疏表示(SPARSE REPRESENTATION PROBLEM WITH DIFFERENT NORM REGULARIZATIONS)

分为五类: 
sparse representation with the l0-norm minimization [37], [38], 
sparse representation with the lp-norm (0 < p < 1) minimization [39]–[41], 
sparse representation with the l1-norm minimization [42]–[45], 
sparse representation with the l2,1-norm minimization [46]–[50], 
sparse representation with the l2-norm minimization [9], [22], [51].

A. 带有  L0  范式最小化的稀疏表示(SPARSE REPRESENTATION WITH l0-NORM MINIMIZATION)

假设  x1,x2,,xnRd  是已知的 n 个样本,矩阵  XRd×n (d<n) ,调查样本(probe sample) yRd , 则有 
这里写图片描述 
简写为 
这里写图片描述 
但是 问题 III.2 是一个欠定线性系统(underdetermined linear system),没有唯一解。所以要求添加一些约束,如求最稀疏的解。因此问题 III.2 可以转化为如下优化问题: 
这里写图片描述 
其中 ||·||_{0} 表示向量中的非零元素(nonzero elements)的个数,也可以看做是稀疏性的度量。 
此外,当正好有 k(k

B. 带有  L1  范式最小化的稀疏表示(SPARSE REPRESENTATION WITH l1-NORM MINIMIZATION)

尽管 l0-norm 最小化的稀疏表示方法能获得 α 在 X 上的基础性的稀疏解,但是这个问题是non-deterministic polynomial-time hard (NP-hard) ,并且解很难接近。因此我们考虑 l1 -norm。 
这里写图片描述 
这里写图片描述

Recent literature [20], [56]–[58] has demonstrated that when the representation solution obtained by using the l1 -norm minimization constraint is also content with the condition of sparsity and the solution using l1 -norm minimization with sufficient sparsity can be equivalent to the solution obtained by l0-norm minimization with full probability.

[20] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, ‘‘Robust face recognition via sparse representation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009. 
[56] D. L. Donoho, ‘‘For most large underdetermined systems of linear equations the minimal `1-norm solution is also the sparsest solution,’’Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797–829, 2006. 
[57] E. J. Candès, J. K. Romberg, and T. Tao, ‘‘Stable signal recovery from incomplete and inaccurate measurements,’’ Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223, 2006. 
[58] E. J. Candès and T. Tao, ‘‘Near-optimal signal recovery from random projections: Universal encoding strategies?’’ IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

C. 带有  Lp  范式最小化的稀疏表示(SPARSE REPRESENTATION WITH lp-NORM (0 < p < 1) MINIMIZATION)

接着考虑 lp-norm ,有 
这里写图片描述 
常用的有 p = 0.1, 1/2 , 1/3 , or 0.9 [59]–[61]。

[59] Q. Lyu, Z. Lin, Y. She, and C. Zhang, ‘‘A comparison of typical lp minimization algorithms,’’ Neurocomputing, vol. 119, pp. 413–424, Nov. 2013. 
[60] Z. Xu, X. Chang, F. Xu, and H. Zhang, ‘‘L1/2 regularization: A thresholding representation theory and a fast solver,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1013–1027, Jul. 2012. 
[61] S. Guo, Z. Wang, and Q. Ruan, ‘‘Enhancing sparsity via lp (0 < p < 1) minimization for robust face recognition,’’ Neurocomputing, vol. 99, pp. 592–602, Jan. 2013.

D. 带有  L2  范式和  L2,1  范式最小化的稀疏表示(SPARSE REPRESENTATION WITH l2-NORM AND l2,1-NORM MINIMIZATION)

l2-norm 最小化获得的稀疏表示解不是严格稀疏的,只能是有限稀疏(limitedly-sparse)的,i.e. the solution has the property that it is discriminative and distinguishable 
but is not really sparse enough [31]。有 
这里写图片描述 
这里写图片描述

l2,1-norm 也叫做rotation invariant l1-norm,提出是主要为了处理离群点(outliers)问题[62]。 
这里写图片描述 
具体看 [46]–[48]。

[31] Z. Zhang, L. Wang, Q. Zhu, Z. Liu, and Y. Chen, ‘‘Noise modeling and representation based classification methods for face recognition,’’ Neurocomputing, vol. 148, pp. 420–429, Jan. 2015. 
[46] F. Nie, H. Huang, X. Cai, and C. Ding, ‘‘Efficient and robust feature selection via joint l2,1-norms minimization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813–1821. 
[47] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, ‘‘l2,1-norm regularized discriminative feature selection for unsupervised learning,’’ in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, vol. 22, no. 1, pp. 1589–1594. 
[48] X. Shi, Y. Yang, Z. Guo, and Z. Lai, ‘‘Face recognition by sparse discriminant analysis via joint L2,1-norm minimization,’’ Pattern Recognit., vol. 47, no. 7, pp. 2447–2453, 2014.

IV. 贪心策略逼近(GREEDY STRATEGY APPROXIMATION)

贪心策略不直接求解优化问题,它寻求 问题 III.3 的一个近似解。

A. 匹配追踪算法(MATCHING PURSUIT ALGORITHM)

匹配追踪(MP)算法的核心思想是基于一定的相似性度量迭代地从字典中选择最好的原子(atom)来逼近获得稀疏解。 
假定初始化的表示残差( initialized representation residual) R0=y , 字典  D=[d1,d2,,dN]Rd×N ,字典 D 中的每个样本已经归一化(i.e. ||d_{i}|| = 1)。 为了接近 y ,MP 首先在 D 中选择与它最匹配的一个原子,即 
这里写图片描述 
其中  l0  是 字典 D 的标签索引(第几个原子或第几列)。因此 y 可以分解为下面的等式: 
这里写图片描述 
所以有这里写图片描述,其中 
这里写图片描述表示  y  到  dl0  上的正交映射(orthogonal projection); R1  是 使用  dl0  表示  y  的表示残差(representation residual)。考虑到  dl0  和  R1  正交(orthogonal ),因此等式  IV.2  可以写为 
这里写图片描述 
为了获得最小的表示残差(minimum representation residual),MP 迭代地从超完备字典(over-completed dictionary)中找到最匹配的原子,然后使用获得的表示残差(representation residual)最为下一次接近的目标,直到迭代终止条件满足。 
对于第 t 次迭代,最好的匹配原子是  dlt ,逼近结果通过下列等式获得 
这里写图片描述 
对于第 n 次迭代,表示残差(representation residual)  ||Rn||2τ ,其中 τ 是一个很小的常数。因此调查样本(probe sample)能被表示为: 
这里写图片描述 
如果(representation residual)足够的小,y 可以近似表示为 
这里写图片描述

更多细节见 [63] 
[63] S. G. Mallat and Z. Zhang, ‘‘Matching pursuits with time-frequency dictionaries,’’ IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, Dec. 1993.

B. 正交匹配追踪算法(ORTHOGONAL MATCHING PURSUIT ALGORITHM)

正交匹配追踪算法 orthogonal matching pursuit (OMP) 使用正交化过程来保证每次迭代中投影的正交方向。[37] 表明 OMP 能在有限时间内收敛。具体实现见下面 
这里写图片描述

MP算法和OMP算法及其思想:http://blog.csdn.net/scucj/article/details/7467955

[37] J. A. Tropp and A. C. Gilbert, ‘‘Signal recovery from random measurements via orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007

V. 约束优化策略(CONSTRAINED OPTIMIZATION STRATEGY)

A. 梯度投影稀疏重建(GRADIENT PROJECTION SPARSE RECONSTRUCTION)

梯度投影稀疏重建 gradient projection sparse representation (GPSR) [73] 算法的核心思想是沿着梯度递减方向找到稀疏的解。GPSR 划分 α 的每个值为正负两部分,形成一个约束的形式。 
这里写图片描述 
其中 操作  ()+  表示正部分操作,即  (x)+=max0,x 。因此有  ||α||1=1Tdα++1Tdα 1d  是一个 d 维的 1 向量。 
对应地 问题 III.12 可以写为一个约束二次形式 
这里写图片描述 
进一步, V.3 可写成 
这里写图片描述 
这里写图片描述

GPSR 使用 梯度下降法(gradient descent)和 标准线性搜索算法(standard line-search method)[32] 来处理问题 V.4 。z 的值可以通过迭代获得 
这里写图片描述 
其中梯度 这里写图片描述,步长 σ。

对于每个 σ, GPSR 更新它 
这里写图片描述 
问题 V.6 有一个闭合形式的解 
这里写图片描述 
此外, GPSR 使用 backtracking linear search method [32] 确保梯度下降法每次迭代的步长为一个更合适的值。backtracking linear search method 的停止条件为 
这里写图片描述

详细算法 
这里写图片描述

[73] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, ‘‘Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,’’ IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 586–597, Dec. 2007

B. 基于内点法的稀疏表示策略(INTERIOR-POINT METHOD BASED SPARSE REPRESENTATION STRATEGY)

本节主要介绍一种叫做 runcated Newton based interior-point method (TNIPM) 用来求解 large-scale l1-regularized least squares (i.e. l_{1}_l_{s} ) problem [74]。

l1_ls 的原始问题 是用来求解问题 III.12,主要步骤如下: 
(1)转换原来的无约束非光滑问题(unconstrained non-smooth problem)为一个有约束光滑优化问题(constrained smooth optimization problem); 
(2)使用内点法转换约束光滑优化问题为一个新的无约束光滑优化问题(unconstrained smooth optimization problem); 
(3)使用截断牛顿法( truncated Newton method)求解这个无约束光滑问题。

用一个简单的例子来描述 
这里写图片描述 
其中 σ 是一个合适的正常数。 
这里写图片描述 
这里写图片描述 
其中 惩罚函数 这里写图片描述强制算法在可行域内(feasible region)执行。 
接着,l_{1}_l_{s} 使用 truncated Newton method 来求解问题 V.14。 
第一步,构建Newton system, 
这里写图片描述 
其中这里写图片描述是 Hessian matrix。 
第二步,问题 III.12 的 Lagrange dual 用来构建对偶可行点(dual feasible point)和对偶间隙(duality gap)。 
这里写图片描述
这里写图片描述
第三步,回溯线性搜索(backtracking linear search)用于确定 牛顿线性搜索(Newton linear search)的一个最优步长。回溯线性搜索的停止条件(stopping condition)为: 
这里写图片描述
其中  ρ(0,0.5)  和  ηt(0,1)  是 牛顿线性搜索的步长。 
最后,牛顿线性搜索(Newton linear search)的终止条件(termination condition)为 
这里写图片描述
其中 函数  h=G(α,σ) , β 是一个小的常数,g 是对偶间隙(duality gap)。

详细算法: 
这里写图片描述

[74] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, ‘‘An interiorpoint method for large-scale `1-regularized least squares,’’ IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2007.

C. 基于交替方向法(ADM)的稀疏表示策略(ALTERNATING DIRECTION METHOD (ADM) BASED SPARSE REPRESENTATION STRATEGY)

这一部分介绍怎样用 ADM [44] 解决 III.12 的原始(primal)和对偶(dual )问题。

首先通过引入一个辅助变量(auxiliary variable) sRd ,将问题 III.12 转换成一个约束问题: 
这里写图片描述
V.22 的增广 Lagrangian 函数为 
这里写图片描述
用 ADM 求解有 
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
上面主要利用二阶泰勒展开(second order Taylor expansion)来近似求解问题 V.27 的子问题。因此算法也叫做 inexact ADM 或 approximate ADM。

详细算法: 
这里写图片描述

[44] J. Yang and Y. Zhang, ‘‘Alternating direction algorithms for L1-problems in compressive sensing,’’ SIAM J. Sci. Comput., vol. 33, no. 1, pp. 250–278, 2011. 
[79] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed optimization and statistical learning via the alternating direction method of multipliers,’’ Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

主要参考文献: 
[37] J. A. Tropp and A. C. Gilbert, ‘‘Signal recovery from random measurements via orthogonal matching pursuit,’’ IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007. 
[38] D. Needell and R. Vershynin, ‘‘Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,’’ Found. Comput. Math., vol. 9, no. 3, pp. 317–334, 2009. 
[39] R. Saab, R. Chartrand, and O. Yilmaz, ‘‘Stable sparse approximations via nonconvex optimization,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar./Apr. 2008, pp. 3885–3888. 
[40] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,’’ IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707–710, Oct. 2007. 
[41] Z. Xu, ‘‘Data modeling: Visual psychology approach and L1/2 regularization theory,’’ in Proc. Int. Congr. Math., 2010, pp. 3151–3184. 
[42] R. Tibshirani, “Regression shrinkage and selection via the lasso,’’ J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267–288, 1996. 
[43] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, ‘‘Least angle regression,’’ Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004. 
[44] J. Yang and Y. Zhang, “Alternating direction algorithms for L1-problems in compressive sensing,’’ SIAM J. Sci. Comput., vol. 33, no. 1, pp. 250–278, 2011. 
[45] M. Schmidt, G. Fung, and R. Rosales, ‘‘Fast optimization methods for L1 regularization: A comparative study and two new approaches,’’ in Machine Learning. Berlin, Germany: Springer-Verlag, 2007, pp. 286–297. 
[46] F. Nie, H. Huang, X. Cai, and C. Ding, ‘‘Efficient and robust feature selection via joint l2,1-norms minimization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813–1821. 
[47] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, ‘‘l2,1-norm regularized discriminative feature selection for unsupervised learning,’’ in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, vol. 22, no. 1, pp. 1589–1594. 
[48] X. Shi, Y. Yang, Z. Guo, and Z. Lai, ‘‘Face recognition by sparse discriminant analysis via joint L2,1-norm minimization,’’ Pattern Recognit., vol. 47, no. 7, pp. 2447–2453, 2014. 
[49] J. Liu, S. Ji, and J. Ye, ‘‘Multi-task feature learning via efficient `2,1-norm minimization,’’ in Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 339–348. 
[50] C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, ‘‘Joint embedding learning and sparse regression: A framework for unsupervised feature selection,’’ IEEE Trans. Cybern., vol. 44, no. 6, pp. 793–804, Jun. 2014. 
[51] D. Zhang, M. Yang, and X. Feng, ‘‘Sparse representation or collaborative representation: Which helps face recognition?’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Nov. 2011, pp. 471–478.

[9] Y. Xu, D. Zhang, J. Yang, and J.-Y. Yang, ‘‘A two-phase test sample sparse representation method for use with face recognition,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 9, pp. 1255–1262, Sep. 2011. 
[22] I. Naseem, R. Togneri, and M. Bennamoun, ‘‘Linear regression for face recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2106–2112, Nov. 2010.

第二部分:http://blog.csdn.net/shanglianlm/article/details/46866803

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值