散射矩阵、协方差矩阵

 

 

散射矩阵、协方差矩阵

数学基础 2009-09-03 15:39:35 阅读180 评论0 字号:

散射矩阵,又称S矩阵,是物理学中描述散射过程的一个主要观测量。

现代高能物理的发展,同其他物理学一样是理论和实验的互动,而这种互动主要的桥梁就是散射矩阵

假设散射源为很好的定域散射源,与被散射粒子的相互作用局限在有限的空间范围内,那么,无穷远时间以前粒子处于一个自由态,称为入态,记为|Ψ>in;无穷远时间之后粒子也是处于一个自由态,称为出态,记为|Ψ>out。 入态到初态,相互作用可以用一个矩阵描述,记为S,那么就有:

|Ψ>out=S |Ψ>in

这就是散射矩阵的定义。

散射矩阵直接与可观测的物理量相联系,但是我们在量子场论中处理的是场,两者如何联系?或者说如何从量子场论计算散射矩阵?我们还要利用一个LSZ约化规则,它联系了量子场论中的格林函数和可观测的散射矩阵。这使得理论能够预言实验。

 

协方差矩阵

统计学概率论中,协方差矩阵(或称共变异矩阵)是一个矩阵,其每个元素是各个向量元素之间的方差。这是从标量随机变量到高维度随机向量的自然推广。

假设X是以n个标量随机变量组成的列向量

X = begin{bmatrix}X_1 vdots X_n end{bmatrix}

并且μi 是其第i个元素的期望值, 即, μi = E(Xi)。协方差矩阵被定义的第i,j项是如下协方差:

Sigma_{ij} = mathrm{cov}(X_i, X_j) = mathrm{E}begin{bmatrix} (X_i - mu_i)(X_j - mu_j) end{bmatrix}

即:

Sigma=mathrm{E} left[ left( textbf{X} - mathrm{E}[textbf{X}] right) left( textbf{X} - mathrm{E}[textbf{X}] right)^top right]
= begin{bmatrix} mathrm{E}[(X_1 - mu_1)(X_1 - mu_1)] & mathrm{E}[(X_1 - mu_1)(X_2 - mu_2)] & cdots & mathrm{E}[(X_1 - mu_1)(X_n - mu_n)] mathrm{E}[(X_2 - mu_2)(X_1 - mu_1)] & mathrm{E}[(X_2 - mu_2)(X_2 - mu_2)] & cdots & mathrm{E}[(X_2 - mu_2)(X_n - mu_n)] vdots & vdots & ddots & vdots mathrm{E}[(X_n - mu_n)(X_1 - mu_1)] & mathrm{E}[(X_n - mu_n)(X_2 - mu_2)] & cdots & mathrm{E}[(X_n - mu_n)(X_n - mu_n)] end{bmatrix}

矩阵中的第(i,j)个元素是XiXj的协方差。这个概念是对于标量随机变量方差的一般化推广。


术语与符号分歧

协方差矩阵有不同的术语。有些统计学家,沿用了概率学家威廉·费勒的说法,把这个矩阵称之为随机向量X的方差(Variance of random vector X),这是从一维随机变量方差到高维随机向量的自然推广。另外一些则把它称为协方差矩阵(Covariance matrix),因为它是随机向量里头每个标量元素的协方差的矩阵。不幸的是,这两种术语带来了一定程度上的冲突:

随机向量X的方差(Variance of random vector X)定义有如下两种形式:

operatorname{var}(textbf{X}) = mathrm{E} left[ (textbf{X} - mathrm{E} [textbf{X}]) (textbf{X} - mathrm{E} [textbf{X}])^top right]

 

operatorname{cov}(textbf{X}) = mathrm{E} left[ (textbf{X} - mathrm{E}[textbf{X}]) (textbf{X} - mathrm{E}[textbf{X}])^top right]

协方差矩阵(Covariance matrix)定义如下:

operatorname{cov}(textbf{X},textbf{Y}) = mathrm{E} left[ (textbf{X} - mathrm{E}[textbf{X}]) (textbf{Y} - mathrm{E}[textbf{Y}])^top right]

第一个记号可以在威廉·费勒的广受推崇的两册概率论及其应用的书中找到。两个术语除了记法之外并没有不同。

性质

Sigma=mathrm{E} left[ left( textbf{X} - mathrm{E}[textbf{X}] right) left( textbf{X} - mathrm{E}[textbf{X}] right)^top right] mu = mathrm{E}(textbf{X}) 满足下边的基本性质:

  1.  Sigma = mathrm{E}(mathbf{X X^top}) - mathbf{mu}mathbf{mu^top}
  2.  operatorname{var}(mathbf{a^top}mathbf{X}) = mathbf{a^top} operatorname{var}(mathbf{X}) mathbf{a}
  3.  mathbf{Sigma} geq 0
  4.  operatorname{var}(mathbf{A X} + mathbf{a}) = mathbf{A} operatorname{var}(mathbf{X}) mathbf{A^top}
  5.  operatorname{cov}(mathbf{X},mathbf{Y}) = operatorname{cov}(mathbf{Y},mathbf{X})^top
  6.  operatorname{cov}(mathbf{X_1} + mathbf{X_2},mathbf{Y}) = operatorname{cov}(mathbf{X_1},mathbf{Y}) + operatorname{cov}(mathbf{X_2}, mathbf{Y})
  7. p = q,则有operatorname{cov}(mathbf{X} + mathbf{Y}) = operatorname{var}(mathbf{X}) + operatorname{cov}(mathbf{X},mathbf{Y}) + operatorname{cov}(mathbf{Y}, mathbf{X}) + operatorname{var}(mathbf{Y})
  8. operatorname{cov}(mathbf{AX}, mathbf{BX}) = mathbf{A} operatorname{cov}(mathbf{X}, mathbf{X}) mathbf{B}^top
  9. mathbf{X}mathbf{Y} 是独立的,则有operatorname{cov}(mathbf{X}, mathbf{Y}) = 0
  10.  Sigma = Sigma^top


其中 mathbf{X}, mathbf{X_1}mathbf{X_2} 是随机mathbf{(p times 1)}向量, mathbf{Y} 是随机mathbf{(q times 1)}向量, mathbf{a}mathbf{(p times 1)} 向量, mathbf{A}mathbf{B}mathbf{(p times q)} 矩阵。

尽管协方差矩阵很简单,可它却是很多领域里的非常有力的工具。它能导出一个变换矩阵,这个矩阵能使数据完全去相关(decorrelation)。从不同的角度看,也就是说能够找出一组最佳的基以紧凑的方式来表达数据。(完整的证明请参考瑞利商)。 这个方法在统计学中被称为主成分分析(principal components analysis),在图像处理中称为Karhunen-Loève 变换(KL-变换)。

复随机向量

均值为μ的复随机标量变量的方差定义如下(使用共轭复数):

operatorname{var}(z) = operatorname{E} left[ (z-mu)(z-mu)^{*} right]

其中复数z的共轭记为z *

如果Z 是一个复列向量,则取其共轭转置,得到一个方阵:

operatorname{E} left[ (Z-mu)(Z-mu)^{*} right]

其中Z * 为共轭转置, 它对于标量也成立,因为标量的转置还是标量。

估计

多元正态分布的协方差矩阵的估计的推导非常精致. 它需要用到谱定义以及为什么把标量看做1 times 1矩阵的trace更好的原因。参见协方差矩阵的估计

Covariance Matrix

Given n sets of variates denoted {X_1}, ..., {X_n} , the first-order covariance matrix is defined by

 V_(ij)=cov(x_i,x_j)=<(x_i-mu_i)(x_j-mu_j)>,

where mu_i is the mean. Higher order matrices are given by

 V_(ij)^(mn)=<(x_i-mu_i)^m(x_j-mu_j)^n>.

An individual matrix element V_(ij)=cov(x_i,x_j) is called the covariance of x_i and x_j.

<think>好的,用户想了解多径信道协方差矩阵的概念、计算方法以及应用场景。我需要先理解这些概念,然后结合提供的引用资料来组织答案。 首先,多径信道协方差矩阵是什么?根据引用[4],协方差矩阵用于多维数据,描述各维度间的相关性。在多径信道中,可能涉及多个天线或多个路径,所以协方差矩阵应该描述不同路径或天线之间的相关性。 然后计算方法。可能需要考虑信道冲激响应或信道矩阵。例如,在MIMO系统中,信道矩阵H可能包含不同天线间的信道响应,协方差矩阵可能通过对H进行统计平均得到,比如求HH^H的期望值。引用[3]提到了MIMO莱斯信道矩阵的MATLAB代码,可能需要使用这样的方法来计算协方差。 应用场景方面,协方差矩阵在波束形成中有用,引用[1]和[2]提到波达方向误差情况下的波束形成,这可能涉及到利用协方差矩阵来优化信号的方向性,抑制干扰。此外,多天线系统中,协方差矩阵有助于分析信道特性,进行信道估计和均衡。 需要注意的是,用户提供的引用中有一些可能不相关的内容,比如引用[1]和[2]提到的是协方差矩阵重构方法在波束形成中的应用,而引用[3]涉及MIMO信道矩阵的生成,引用[4]解释协方差矩阵的基本概念。需要将这些信息整合起来,解释多径信道中的协方差矩阵。 可能还需要解释多径信道如何导致信号在不同路径上的相关性,进而如何用协方差矩阵来表征这种多径效应。此外,计算时需要考虑时间延迟、多普勒频移等因素的影响,或者在不同天线间的空间相关性。 最后,生成相关问题,需要围绕概念、计算方法、应用以及可能的扩展,如优化方法或具体实现技术。</think>### 多径信道协方差矩阵详解 #### 1. **基本概念** 多径信道协方差矩阵用于描述无线信道中多径分量的统计特性,反映不同路径信号在**空间、时间、频率**维度上的相关性[^4]。例如,在$M \times N$的MIMO系统中,信道矩阵$H$的协方差矩阵可表示为: $$ R = \mathbb{E}\left[ H H^H \right] $$ 其中$H^H$是信道矩阵的共轭转置,$\mathbb{E}[\cdot]$表示期望运算。该矩阵刻画了天线间信号的空间相关性[^3]。 #### 2. **计算方法** **步骤1:信道建模** 假设信道由$L$条多径组成,每条路径的时延为$\tau_l$,增益为$\alpha_l$,则信道冲激响应为: $$ h(t) = \sum_{l=1}^L \alpha_l \delta(t - \tau_l) $$ **步骤2:构建信道矩阵** 对于多天线系统(如MIMO),信道矩阵$H$的每个元素$h_{ij}$表示第$i$根发射天线到第$j$根接收天线的信道响应。在莱斯信道下,$H$可分解为: $$ H = \sqrt{\frac{K}{K+1}} H_{\text{LOS}} + \sqrt{\frac{1}{K+1}} H_{\text{NLOS}} $$ 其中$K$为莱斯因子,$H_{\text{LOS}}$是视距分量,$H_{\text{NLOS}}$是非视距散射分量[^3]。 **步骤3:计算协方差矩阵** 通过对多次信道估计结果取统计平均: $$ R = \frac{1}{N} \sum_{n=1}^N H_n H_n^H $$ 其中$N$为采样次数。 #### 3. **应用场景** - **波束形成**:通过协方差矩阵重构,优化天线权重以抑制干扰信号[^1][^2] - **信道容量分析**:利用协方差矩阵特征值分析MIMO信道容量 - **信道估计**:在OFDM系统中,利用频域协方差矩阵降低估计误差 #### 4. **MATLAB代码片段示例** ```matlab % 生成瑞利信道矩阵(Nt=2, Nr=3) Nt = 2; Nr = 3; K = 5; H_LOS = ones(Nr, Nt); % 视距分量 H_NLOS = (randn(Nr, Nt) + 1i*randn(Nr, Nt))/sqrt(2); % 非视距分量 H = sqrt(K/(K+1))*H_LOS + sqrt(1/(K+1))*H_NLOS; % 计算协方差矩阵 R = H * H'; disp('协方差矩阵:'); disp(R); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值