UPA/URA双极化天线的协方差矩阵结构

UPA的阵列响应向量(暂不考虑双极化天线)

下图形象描述了UPA阵列的接收信号

UPA阵列的水平(Horizontal)方向的天线间距为 d H d_H dH,垂直(Vertical)方向的天线间距为 d V d_V dV,图中BA是点A处的阵元接收到的信号方向,我们需要衡量水平、垂直两个方向的路径差。

(1)水平方向的路径差
考虑三角形OAB,我们从图中可以看出三个点的坐标分别为: ( 0 , 0 , 0 ) , ( d H , 0 , 0 ) , ( r cos ⁡ ϕ sin ⁡ θ + d H , r cos ⁡ ϕ cos ⁡ θ , r sin ⁡ ϕ ) (0,0,0),(d_H,0,0),(r \cos \phi \sin \theta + d_H, r \cos \phi \cos \theta, r \sin \phi) (0,0,0),(dH,0,0),(rcosϕsinθ+dH,rcosϕcosθ,rsinϕ),可以进一步计算该三角形三条边的长度
O A = d H O B = ∣ ( r cos ⁡ ϕ sin ⁡ θ + d H , r cos ⁡ ϕ cos ⁡ θ , r sin ⁡ ϕ ) ∣ A B = r \begin{aligned} OA &= d_H \\ OB &= \left | (r \cos \phi \sin \theta + d_H, r \cos \phi \cos \theta, r \sin \phi) \right| \\ AB &= r \end{aligned} OAOBAB=dH=(rcosϕsinθ+dH,rcosϕcosθ,rsinϕ)=r

根据三角余弦定理,我们可以得到
cos ⁡ ∠ O A B = ∣ A B ∣ 2 + ∣ O A ∣ 2 − ∣ O B ∣ 2 2 ∣ A B ∣ ⋅ ∣ O A ∣ = r 2 + d H 2 − ( r 2 + d H 2 + 2 d H r cos ⁡ ϕ sin ⁡ θ ) 2 r d H = cos ⁡ ϕ sin ⁡ θ \begin{aligned} \cos {\angle {OAB}} &= \frac { |AB|^2 + |OA|^2 - |OB|^2 }{2 |AB| \cdot |OA|} \\ &= \frac{ r^2 + d^2_H - (r^2 + d^2_H+ 2 d_H r \cos \phi \sin \theta) } {2 r d_H} \\ &= \cos \phi \sin \theta \end{aligned} cosOAB=2∣ABOAAB2+OA2OB2=2rdHr2+dH2(r2+dH2+2dHrcosϕsinθ)=cosϕsinθ

因此水平方向的路径差为:
Δ H = d H cos ⁡ ∠ O A B = d H cos ⁡ ϕ sin ⁡ θ \Delta_H = d_H \cos {\angle {OAB}} = d_H \cos \phi \sin \theta ΔH=dHcosOAB=dHcosϕsinθ

(2)垂直方向的路径差
不难看出,垂直方向的路径差为
Δ V = d V sin ⁡ ϕ \Delta_V= d_V \sin \phi ΔV=dVsinϕ

因此阵列响应向量对应的延时(相位)部分可以表征为:
Ψ ( u − 1 ) N H + v ( ϕ , θ ) = 2 π λ [ ( u − 1 ) d V sin ⁡ ϕ + ( v − 1 ) d H cos ⁡ ϕ sin ⁡ θ ] \Psi_{(u-1)N_H+v}(\phi, \theta) = \frac{2 \pi}{\lambda} \left [ (u-1) d_V \sin \phi + (v-1)d_H \cos \phi \sin \theta \right] Ψ(u1)NH+v(ϕ,θ)=λ2π[(u1)dVsinϕ+(v1)dHcosϕsinθ]

其中 1 ≤ u ≤ N V , 1 ≤ v ≤ N H 1 \leq u \leq N_V, 1 \leq v \leq N_H 1uNV,1vNH

为了与论文[1]的符号对齐,这里我们令
cos ⁡ θ 1 = sin ⁡ ϕ sin ⁡ θ 2 = sin ⁡ θ \begin{aligned} \cos \theta_1 &= \sin \phi \\ \sin \theta_2&= \sin \theta \end{aligned} cosθ1sinθ2=sinϕ=sinθ

θ = ( θ 1 , θ 2 ) T \boldsymbol \theta = (\theta_1, \theta_2)^T θ=(θ1,θ2)T,这时UPA阵列响应向量中含相位的项为
e j Ψ ( θ ) : = [ e j Ψ 1 ( θ ) , e j Ψ 2 ( θ ) , ⋯   , e j Ψ N V N H ( θ ) ] T ∈ C N V N H × 1 e^{j \boldsymbol \Psi(\boldsymbol \theta)} := \left [ e^{j \Psi_1(\boldsymbol \theta)}, e^{j \Psi_2(\boldsymbol \theta)}, \cdots, e^{j \Psi_{N_V N_H}(\boldsymbol \theta)} \right]^T \in \mathbb C^{N_V N_H \times 1} ejΨ(θ):=[ejΨ1(θ),ejΨ2(θ),,ejΨNVNH(θ)]TCNVNH×1

其中:
Ψ ( u − 1 ) N H + v ( θ ) = 2 π λ [ ( u − 1 ) d V cos ⁡ θ 1 + ( v − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] ,    1 ≤ u ≤ N V , 1 ≤ v ≤ N H \Psi_{(u-1)N_H+v}(\boldsymbol \theta) = \frac{2 \pi}{\lambda} \left [ (u-1) d_V \cos \theta_1 + (v-1)d_H \sin \theta_1 \sin \theta_2 \right], \ \ 1 \leq u \leq N_V, 1 \leq v \leq N_H Ψ(u1)NH+v(θ)=λ2π[(u1)dVcosθ1+(v1)dHsinθ1sinθ2],  1uNV,1vNH

更进一步,UPA阵列响应向量为(包含水平方向和垂直方向):
a V ( θ ) = a V ( θ ) e j Ψ ( θ ) ∈ C N V N H × 1 a H ( θ ) = a H ( θ ) e j Ψ ( θ ) ∈ C N V N H × 1 \begin{aligned} \boldsymbol a_V (\boldsymbol \theta) &= a_V(\boldsymbol \theta) e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{N_V N_H \times 1} \\ \boldsymbol a_H (\boldsymbol \theta) &= a_H(\boldsymbol \theta) e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{N_V N_H \times 1} \\ \end{aligned} aV(θ)aH(θ)=aV(θ)ejΨ(θ)CNVNH×1=aH(θ)ejΨ(θ)CNVNH×1

其中 a V ( θ ) , a H ( θ ) ∈ R a_V(\boldsymbol \theta),a_H(\boldsymbol \theta) \in \mathbb R aV(θ),aH(θ)R表示天线本身的field pattern(对应幅度的概念)。

UPA阵列响应:从单极化天线到双极化天线

注意到,上一章节所推演的阵列响应响应为单极化UPA阵列。对于双极化UPA,其阵列响应向量定义为
a V ( θ ) = [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ∈ C 2 N V N H × 1 a H ( θ ) = [ a H , 1 ( θ ) a H , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ∈ C 2 N V N H × 1 \begin{aligned} \boldsymbol a_V (\boldsymbol \theta) &= \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{2 N_V N_H \times 1} \\ \boldsymbol a_H (\boldsymbol \theta) &= \left[ \begin{array}{c} a_{H,1}\left( \boldsymbol{\theta } \right)\\ a_{H,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{2 N_V N_H \times 1} \end{aligned} aV(θ)aH(θ)=[aV,1(θ)aV,2(θ)]ejΨ(θ)C2NVNH×1=[aH,1(θ)aH,2(θ)]ejΨ(θ)C2NVNH×1

其中 a V , 1 , a V , 2 ∈ R a_{V,1},a_{V,2} \in \mathbb R aV,1,aV,2R分别表示垂直方向上, + 45 ° +45 \degree +45° − 45 ° -45 \degree 45°极化天线的field pattern,为天线固有的值,不受环境影响。

UPA双极化天线的协方差矩阵结构

双极化UPA阵列的协方差矩阵为
R = ∫ Ω ρ V ( θ ) a V ( θ ) a V H ( θ ) d θ + ∫ Ω ρ H ( θ ) a H ( θ ) a H H ( θ ) d θ ∈ C 2 N V N H × 2 N V N H \boldsymbol R= \int_{\Omega} \rho_V(\boldsymbol \theta) \boldsymbol a_V(\boldsymbol \theta) \boldsymbol a_V^H(\boldsymbol \theta) d \boldsymbol \theta + \int_{\Omega} \rho_H(\boldsymbol \theta) \boldsymbol a_H(\boldsymbol \theta) \boldsymbol a_H^H(\boldsymbol \theta) d \boldsymbol \theta \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} R=ΩρV(θ)aV(θ)aVH(θ)dθ+ΩρH(θ)aH(θ)aHH(θ)dθC2NVNH×2NVNH

不失一般性,这里我们只关注 a V ( θ ) a V H ( θ ) \boldsymbol a_V(\boldsymbol \theta) \boldsymbol a_V^H(\boldsymbol \theta) aV(θ)aVH(θ)
a V ( θ ) a V H ( θ ) = ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ) ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ) H = ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ) ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] T ⊗ ( e j Ψ ( θ ) ) H ) = [ a V , 1 2 ( θ ) a V , 1 ( θ ) a V , 2 ( θ ) a V , 2 ( θ ) a V , 1 ( θ ) a V , 2 2 ( θ ) ] ⊗ ( e j Ψ ( θ ) ( e j Ψ ( θ ) ) H ) \begin{aligned} \boldsymbol a_V(\boldsymbol \theta) \boldsymbol a_V^H(\boldsymbol \theta) &= \left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right) \left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right)^H \\ &=\left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right) \left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right]^T \otimes \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \right) \\ &= \left[ \begin{matrix} a_{V,1}^{2}\left( \boldsymbol{\theta } \right)& a_{V,1}\left( \boldsymbol{\theta } \right) a_{V,2}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right) a_{V,1}\left( \boldsymbol{\theta } \right)& a_{V,2}^{2}\left( \boldsymbol{\theta } \right)\\ \end{matrix} \right] \otimes \left ( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \right) \end{aligned} aV(θ)aVH(θ)=([aV,1(θ)aV,2(θ)]ejΨ(θ))([aV,1(θ)aV,2(θ)]ejΨ(θ))H=([aV,1(θ)aV,2(θ)]ejΨ(θ))([aV,1(θ)aV,2(θ)]T(ejΨ(θ))H)=[aV,12(θ)aV,2(θ)aV,1(θ)aV,1(θ)aV,2(θ)aV,22(θ)](ejΨ(θ)(ejΨ(θ))H)

我们不难看出,协方差矩阵 R ∈ C 2 N V N H × 2 N V N H \boldsymbol R \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} RC2NVNH×2NVNH,具有特定的块结构,可写为
R = [ B 1 B 2 H B 2 B 3 ] ∈ C 2 N V N H × 2 N V N H \boldsymbol R = \left[ \begin{matrix} \boldsymbol{B}_1& \boldsymbol{B}_{2}^{H}\\ \boldsymbol{B}_2& \boldsymbol{B}_3\\ \end{matrix} \right] \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} R=[B1B2B2HB3]C2NVNH×2NVNH

其中 B 1 , B 2 , B 3 ∈ C N V N H × N V N H \boldsymbol{B}_1,\boldsymbol{B}_2,\boldsymbol{B}_3 \in \mathbb C^{ N_V N_H \times N_V N_H} B1,B2,B3CNVNH×NVNH具有相同的结构性质,且不难看出,该性质取决于 e j Ψ ( θ ) ( e j Ψ ( θ ) ) H ∈ C N V N H × N V N H e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \in \mathbb C^{ N_V N_H \times N_V N_H} ejΨ(θ)(ejΨ(θ))HCNVNH×NVNH。回顾 e j Ψ ( θ ) e^{j \boldsymbol \Psi(\boldsymbol \theta)} ejΨ(θ)的表达式:
e j Ψ ( θ ) = [ e j Ψ 1 ( θ ) , e j Ψ 2 ( θ ) , ⋯   , e j Ψ N V N H ( θ ) ] T Ψ ( u − 1 ) N H + v ( θ ) = 2 π λ [ ( u − 1 ) d V cos ⁡ θ 1 + ( v − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] \begin{aligned} e^{j \boldsymbol \Psi(\boldsymbol \theta)} &= \left [ e^{j \Psi_1(\boldsymbol \theta)}, e^{j \Psi_2(\boldsymbol \theta)}, \cdots, e^{j \Psi_{N_V N_H}(\boldsymbol \theta)} \right]^T \\ \Psi_{(u-1)N_H+v}(\boldsymbol \theta) &= \frac{2 \pi}{\lambda} \left [ (u-1) d_V \cos \theta_1 + (v-1)d_H \sin \theta_1 \sin \theta_2 \right] \end{aligned} ejΨ(θ)Ψ(u1)NH+v(θ)=[ejΨ1(θ),ejΨ2(θ),,ejΨNVNH(θ)]T=λ2π[(u1)dVcosθ1+(v1)dHsinθ1sinθ2]

我们不妨先固定 u 0 ∈ { 1 , ⋯   , N V } u_0 \in \{1,\cdots,N_V\} u0{1,,NV},取子向量 ( e j Ψ k ( θ ) : k = ( u 0 − 1 ) N H + v , v = 1 , ⋯   , N H ) ∈ C N H × 1 \left (e^{j \Psi_k(\boldsymbol \theta)}: k=(u_0-1)N_H+v, v=1,\cdots,N_H \right) \in \mathbb C^{N_H \times 1} (ejΨk(θ):k=(u01)NH+v,v=1,,NH)CNH×1,令
∣ u 0 ⟩ = ( e j Ψ k ( θ ) : k = ( u 0 − 1 ) N H + v , v = 1 , ⋯   , N H ) ∈ C N H × 1 |u_0 \rangle = \left (e^{j \Psi_k(\boldsymbol \theta)}: k=(u_0-1)N_H+v, v=1,\cdots,N_H \right) \in \mathbb C^{N_H \times 1} u0=(ejΨk(θ):k=(u01)NH+v,v=1,,NH)CNH×1

(这里存在一定程度的符号滥用,但为了方便叙述,我们选择采用量子力学中常用的狄拉克符号),则 e j Ψ ( θ ) ( e j Ψ ( θ ) ) H ∈ C N V N H × N V N H e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \in \mathbb C^{ N_V N_H \times N_V N_H} ejΨ(θ)(ejΨ(θ))HCNVNH×NVNH可以写为
e j Ψ ( θ ) ( e j Ψ ( θ ) ) H = [ ∣ 1 ⟩ ⟨ 1 ∣ ∣ 1 ⟩ ⟨ 2 ∣ ∣ 1 ⟩ ⟨ 3 ∣ ⋯ ∣ 1 ⟩ ⟨ N V ∣ ∣ 2 ⟩ ⟨ 1 ∣ ∣ 2 ⟩ ⟨ 2 ∣ ∣ 2 ⟩ ⟨ 3 ∣ ⋯ ⋮ ∣ 3 ⟩ ⟨ 1 ∣ ∣ 3 ⟩ ⟨ 2 ∣ ∣ 3 ⟩ ⟨ 3 ∣ ⋯ ∣ N V − 1 ⟩ ⟨ N V ∣ ⋮ ⋮ ⋮ ⋱ ∣ N V − 1 ⟩ ⟨ N V ∣ ∣ N V ⟩ ⟨ 1 ∣ ⋯ ∣ N V ⟩ ⟨ N V − 2 ∣ ∣ N V ⟩ ⟨ N V − 1 ∣ ∣ N V ⟩ ⟨ N V ∣ ] e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H=\left[ \begin{matrix}{} |1\rangle \langle 1|& |1\rangle \langle 2|& |1\rangle \langle 3|& \cdots& |1\rangle \langle N_V|\\ |2\rangle \langle 1|& |2\rangle \langle 2|& |2\rangle \langle 3|& \cdots& \vdots\\ |3\rangle \langle 1|& |3\rangle \langle 2|& |3\rangle \langle 3|& \cdots& |N_V-1\rangle \langle N_V|\\ \vdots& \vdots& \vdots& \ddots& |N_V-1\rangle \langle N_V|\\ |N_V\rangle \langle 1|& \cdots& |N_V\rangle \langle N_V-2|& |N_V\rangle \langle N_V-1|& |N_V\rangle \langle N_V|\\ \end{matrix} \right] ejΨ(θ)(ejΨ(θ))H= ∣11∣∣21∣∣31∣NV1∣∣12∣∣22∣∣32∣∣13∣∣23∣∣33∣NVNV2∣NVNV1∣∣1NVNV1NVNV1NVNVNV

首先,我们不难发现
∣ i ⟩ ⟨ j ∣ = ∣ i + d ⟩ ⟨ j + d ∣ ,    ∀ d |i \rangle \langle j| = |i+d \rangle \langle j+d|, \ \ \forall d ij=i+dj+d,  d

因此,我们只需要关注 ∣ 1 ⟩ ⟨ 1 ∣ , ∣ 2 ⟩ ⟨ 1 ∣ , ⋯   , ∣ N V ⟩ ⟨ 1 ∣ |1\rangle \langle 1|, |2\rangle \langle 1|, \cdots, |N_V\rangle \langle 1| ∣11∣,∣21∣,,NV1∣即可

u 0 = 1 u_0=1 u0=1
∣ 1 ⟩ ⟨ 1 ∣ = [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H |1\rangle \langle 1| = \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H ∣11∣= 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H

不难发现,上述写法直接对应到ULA阵,因此对应部分的块矩阵满足Toplitz性

u 0 > 1 u_0 > 1 u0>1
∣ u 0 ⟩ ⟨ 1 ∣ = ( e j 2 π λ ( u 0 − 1 ) d V cos ⁡ θ 1 [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] ) [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H = e j 2 π λ ( u 0 − 1 ) d V cos ⁡ θ 1 [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H \begin{aligned} |u_0 \rangle \langle 1| &=\left ( e^{j \frac{2\pi}{\lambda}(u_0-1)d_V \cos \theta_1} \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \right ) \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H \\ &= e^{j \frac{2\pi}{\lambda}(u_0-1)d_V \cos \theta_1 } \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H \end{aligned} u01∣= ejλ2π(u01)dVcosθ1 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H=ejλ2π(u01)dVcosθ1 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H

注意到,无论是 ∣ 1 ⟩ ⟨ 1 ∣ |1\rangle \langle 1| ∣11∣还是 ∣ u 0 ⟩ ⟨ 1 ∣ , u 0 > 1 |u_0 \rangle \langle 1|,u_0 > 1 u01∣,u0>1,大家都有一个公共的Toeplitz结构,即
[ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H = [ α 1 α 2 ∗ ⋯ α N H ∗ α 2 α 1 ⋱ ⋮ ⋮ ⋱ ⋱ α 2 ∗ α N H ⋯ α 2 α 1 ] ∈ C N H × N H \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H = \left[ \begin{matrix} \alpha _1& \alpha _{2}^{*}& \cdots& \alpha _{N_H}^{*}\\ \alpha _2& \alpha _1& \ddots& \vdots\\ \vdots& \ddots& \ddots& \alpha _{2}^{*}\\ \alpha _{N_H}& \cdots& \alpha _2& \alpha _1\\ \end{matrix} \right] \in \mathbb C^{N_H \times N_H} 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H= α1α2αNHα2α1α2αNHα2α1 CNH×NH

因为积分无非就是加权求和,并不改变上述积分内部矩阵的结构,因此我们得出如下结论:
考虑协方差矩阵
R = [ B 1 B 2 H B 2 B 3 ] ∈ C 2 N V N H × 2 N V N H \boldsymbol R = \left[ \begin{matrix} \boldsymbol{B}_1& \boldsymbol{B}_{2}^{H}\\ \boldsymbol{B}_2& \boldsymbol{B}_3\\ \end{matrix} \right] \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} R=[B1B2B2HB3]C2NVNH×2NVNH

的每一个块矩阵 B 1 , B 2 , B 3 ∈ C N V N H × N V N H \boldsymbol{B}_1,\boldsymbol{B}_2,\boldsymbol{B}_3 \in \mathbb C^{ N_V N_H \times N_V N_H} B1,B2,B3CNVNH×NVNH具有相同的结构,即
B l = [ B l , 1 B l , 2 H B l , 3 H ⋯ B l , N V H B l , 2 B l , 1 B l , 2 H ⋱ ⋮ B l , 3 B l , 2 B l , 1 ⋱ B l , 3 H ⋮ ⋱ ⋱ ⋱ B l , 2 H B l , N V ⋯ B l , 3 B l , 2 B l , 1 ] ∈ C N V N H × N V N H \boldsymbol{B}_l=\left[ \begin{matrix}{} \boldsymbol{B}_{l,1}& \boldsymbol{B}_{l,2}^{H}& \boldsymbol{B}_{l,3}^{H}& \cdots& \boldsymbol{B}_{l,N_V}^{H}\\ \boldsymbol{B}_{l,2}& \boldsymbol{B}_{l,1}& \boldsymbol{B}_{l,2}^{H}& \ddots& \vdots\\ \boldsymbol{B}_{l,3}& \boldsymbol{B}_{l,2}& \boldsymbol{B}_{l,1}& \ddots& \boldsymbol{B}_{l,3}^{H}\\ \vdots& \ddots& \ddots& \ddots& \boldsymbol{B}_{l,2}^{H}\\ \boldsymbol{B}_{l,N_V}& \cdots& \boldsymbol{B}_{l,3}& \boldsymbol{B}_{l,2}& \boldsymbol{B}_{l,1}\\ \end{matrix} \right] \in \mathbb{C}^{ N_V N_H \times N_V N_H } Bl= Bl,1Bl,2Bl,3Bl,NVBl,2HBl,1Bl,2Bl,3HBl,2HBl,1Bl,3Bl,2Bl,NVHBl,3HBl,2HBl,1 CNVNH×NVNH

其中

B l , 1 = β ⋅ [ α 1 α 2 ∗ ⋯ α N H ∗ α 2 α 1 ⋱ ⋮ ⋮ ⋱ ⋱ α 2 ∗ α N H ⋯ α 2 α 1 ] ∈ C N H × N H , β ∈ R \boldsymbol{B}_{l,1} = \beta \cdot \left[ \begin{matrix} \alpha _1& \alpha _{2}^{*}& \cdots& \alpha _{N_H}^{*}\\ \alpha _2& \alpha _1& \ddots& \vdots\\ \vdots& \ddots& \ddots& \alpha _{2}^{*}\\ \alpha _{N_H}& \cdots& \alpha _2& \alpha _1\\ \end{matrix} \right] \in \mathbb C^{N_H \times N_H}, \beta \in \mathbb R Bl,1=β α1α2αNHα2α1α2αNHα2α1 CNH×NH,βR

B l , u 0 = β ⋅ e j 2 π λ ( u 0 − 1 ) d V cos ⁡ θ 1 ⋅ [ α 1 α 2 ∗ ⋯ α N H ∗ α 2 α 1 ⋱ ⋮ ⋮ ⋱ ⋱ α 2 ∗ α N H ⋯ α 2 α 1 ] ∈ C N H × N H , β ∈ R , u 0 > 1 \boldsymbol{B}_{l,u_0} = \beta \cdot e^{j \frac{2\pi}{\lambda}(u_0-1)d_V \cos \theta_1} \cdot \left[ \begin{matrix} \alpha _1& \alpha _{2}^{*}& \cdots& \alpha _{N_H}^{*}\\ \alpha _2& \alpha _1& \ddots& \vdots\\ \vdots& \ddots& \ddots& \alpha _{2}^{*}\\ \alpha _{N_H}& \cdots& \alpha _2& \alpha _1\\ \end{matrix} \right] \in \mathbb C^{N_H \times N_H}, \beta \in \mathbb R, u_0 > 1 Bl,u0=βejλ2π(u01)dVcosθ1 α1α2αNHα2α1α2αNHα2α1 CNH×NH,βR,u0>1

  • B l , 1 \boldsymbol{B}_{l,1} Bl,1的自由度为 N H N_H NH
  • B l , u 0 , u 0 > 1 \boldsymbol{B}_{l,u_0}, u_0 > 1 Bl,u0,u0>1的自由度为 N H + N H − 1 N_H+N_H-1 NH+NH1

参考文献

[1] L. Miretti, R. L. G. Cavalcante and S. Stańczak, “Channel Covariance Conversion and Modelling Using Infinite Dimensional Hilbert Spaces,” in IEEE Transactions on Signal Processing, vol. 69, pp. 3145-3159, 2021, doi: 10.1109/TSP.2021.3082461.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值