特征:
首先要了解什么是特征,特征简单来说就是分辨识别物体的“钥匙” ,模型通过提取的特征判断你所给出的图片是否具有这些特征。
卷积:
卷积就是进行特征的提取操作必不可少的部分,卷积可以将图片的特征进行提取离不开卷积的操作方式。
用卷积进行特征提取,在本质上就是在上一个图像中进行很多个部分的截图,每个截图都有自己需要放大强调的内容,这个放大强调的内容就是特征,其中“截图”的个数就是每一层卷积核的个数,也可以理解为每一层的神经单元个数!
原输入
对每个细节特征进行放大截图
(由于环境限制,这里的“截图”是尺寸一样的,且不应该只是单纯的截取图中的一部分,是需要和卷积核作用的,这里只是举例子表示卷积结果是从图像中一些细节的放大)
每一层输入都有长、宽、深,每一层的深度(如图2的深度为4,图1的深度为1)就是每层卷积核的个数,也就是每层神经元的个数。
每一层所提取的多个细节的“截图”都是所提取的特征。
思考:
对于Unet模型来说,是否把图像提取的所有特征都投入使用了。如下图(偷的图)可以看出把每层卷积提取出来的特征都通过copy and crop 使用上了,所以我个人认为,这就是为什么Unet可以实现所需要的效果。
而神经网络的误差逆传播修正卷积核权重的方式,就相当于橡皮泥(最开始就是一块长方体,你需要按照图片的样式逐步给橡皮泥捏成目标形状),只是捏橡皮泥的人不是你,而是误差逆传播公式代替了你,自动捏出目标形状。