CNN可以用卷积提取特征的根本原因

特征:

        首先要了解什么是特征,特征简单来说就是分辨识别物体的“钥匙”   ,模型通过提取的特征判断你所给出的图片是否具有这些特征。

卷积:

        卷积就是进行特征的提取操作必不可少的部分,卷积可以将图片的特征进行提取离不开卷积的操作方式。

        用卷积进行特征提取,在本质上就是在上一个图像中进行很多个部分的截图每个截图都有自己需要放大强调的内容这个放大强调的内容就是特征,其中“截图”的个数就是每一层卷积核的个数,也可以理解为每一层的神经单元个数!

原输入

对每个细节特征进行放大截图

(由于环境限制,这里的“截图”是尺寸一样的且不应该只是单纯的截取图中的一部分,是需要和卷积核作用的,这里只是举例子表示卷积结果是从图像中一些细节的放大)

        每一层输入都有长、宽、深,每一层的深度(如图2的深度为4,图1的深度为1)就是每层卷积核的个数,也就是每层神经元的个数

每一层所提取的多个细节的“截图”都是所提取的特征。

思考:

        对于Unet模型来说,是否把图像提取的所有特征都投入使用了。如下图(偷的图)可以看出把每层卷积提取出来的特征都通过copy and crop 使用上了,所以我个人认为,这就是为什么Unet可以实现所需要的效果。

        而神经网络的误差逆传播修正卷积核权重的方式,就相当于橡皮泥(最开始就是一块长方体,你需要按照图片的样式逐步给橡皮泥捏成目标形状),只是捏橡皮泥的人不是你,而是误差逆传播公式代替了你,自动捏出目标形状。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值