AI Agent是什么?一文读懂这位“全能管家”

1、智能体的定义与分类

1.1 什么是智能体

智能体(Agent)是一种能够感知环境、制定决策并采取行动以实现特定目标的AI系统,一般具有记忆、规划、采取行为、使用工具等基本能力,如下图所示,其中规划中有思维链、能进行反思、目标分解。与传统AI系统不同,智能体具有自主性、持续性和适应性,能够在复杂环境中持续学习和优化自身行为。

图片

1.2 OS Agent:操作系统智能体

OS Agent(操作系统智能体)是一类特殊的智能体,它们通过操作计算设备(如计算机和移动手机)的图形用户界面(GUI)来完成各种任务。根据最新的OS Agent综述,这类智能体有三个关键组成部分:

  • 环境:OS Agent所处的操作系统环境,如Windows、macOS、Android等
  • 观察空间:智能体获取信息的方式,如界面截图、DOM结构等
  • 行动空间:智能体可执行的操作集合,如点击、输入、滑动等

图片

1.3 智能体的主要分类

根据输入模态和技术实现,GUI智能体可分为三类:

  • 基于语言的智能体:仅使用HTML/XML等文本描述作为输入
  • 基于视觉的智能体:仅使用屏幕截图作为输入
  • 视觉-语言混合智能体:同时使用屏幕截图和文本描述作为输入

其中,基于视觉的智能体(如SpiritSight)和视觉-语言混合智能体(如MobileFlow)因其跨平台兼容性和丰富的感知能力,正成为研究热点。

图片

2. 智能体的核心能力

现代智能体,特别是OS/GUI智能体,需要具备以下核心能力:

2.1 理解能力

理解能力是指智能体解读用户指令、理解任务目标的能力。最新研究如MobileFlow引入了GUI Chain-of-Thought(CoT)技术,使模型能够像人类一样进行推理,从而更好地理解复杂任务。

2.2 感知与定位能力

感知能力是智能体理解环境的基础。对GUI智能体而言,关键的感知挑战是元素定位(Element Grounding):

  • SpiritSight提出的Universal Block Parsing(UBP)方法解决了动态高分辨率输入中的歧义问题
  • MobileFlow的混合视觉编码器支持可变分辨率输入,提高了对细节的感知能力
  • OpenAI的ComputerUse则通过闭环视觉-操作系统直接分析整个屏幕并执行精确操作
2.3 规划能力

规划能力是智能体将复杂任务分解为步骤序列的能力。根据OS Agent综述,规划方法分为两类:

  • 全局规划:在任务开始前规划完整的操作序列
  • 迭代规划:根据环境反馈动态调整操作计划

如MobileFlow采用的四步法(观察、推理、行动、总结)就是一种有效的迭代规划框架。

2.4 操作能力

操作能力是智能体执行具体行动的能力,典型的GUI操作包括:

  • 鼠标/触摸操作:点击、长按、拖拽
  • 键盘操作:文本输入、快捷键
  • 导航操作:滚动、翻页、切换标签等。

3. 当前智能体技术前沿

3.1 OpenAI的ComputerUse

OpenAI的ComputerUse是一项革命性技术,它使AI代理能够直接操作计算机界面:

  • 技术原理:基于Computer-Using Agent (CUA)模型,结合GPT-4o的视觉能力和推理能力
  • 工作流程:指令理解→动作生成→执行与反馈→状态理解→迭代改进
  • 支持环境:浏览器、macOS、Windows、Ubuntu(暂不支持移动平台)
  • 应用场景:自动化测试、探索式测试、回归测试、跨平台一致性测试等。

图片

3.2 SpiritSight:视觉导向的GUI智能体

SpiritSight代表了基于视觉的GUI智能体的最新进展:

  • 核心创新:提出GUI-Lasagne多级大规模GUI数据集和Universal Block Parsing方法
  • 技术特点:端到端、纯视觉感知,无需HTML/XML辅助
  • 性能表现:在Multimodal-Mind2Web等多个基准测试中超越现有方法
  • 跨语言能力:通过小规模目标语言数据微调,可实现跨语言(如中文)GUI操作

图片

3.3 MobileFlow:移动设备专用智能体

MobileFlow专注于移动设备场景的智能体设计:

  • 模型架构:基于Qwen-VL-Chat,采用混合视觉编码器,支持21B参数规模
  • 技术特点:支持可变分辨率输入、良好的多语言支持、采用MoE结构
  • 训练策略:GUI对齐(定位、引用、问答、描述)和GUI Chain-of-Thought
  • 实际应用:已在软件测试和广告预览审核等场景成功部署

图片

4、垂直类Agent开发全流程解析

4.1. 需求阶段
  • 业务场景梳理:需求分析是垂直类Agent开发的基础环节,这个部分的质量决定了最终产品的价值实现。这个阶段,需要进行深入细致的业务场景梳理,使用5W1H分析法捕捉关键信息。例如,在医疗影像诊断场景中,需要我们明确Agent的服务对象既包括放射科医生也包括临床医生,他们具有不同的专业背景和使用需求;核心任务包括从影像数据预处理、病灶检测到结构化报告生成的完整流程;触发条件不仅包括DICOM格式影像数据上传,还包括历史病例调阅请求等多种情境。这种全面的需求分析能够保证Agent的功能设计与实际医疗工作流程无缝衔接。
  • 价值量化模型:价值量化模型构建是证明投资合理性的关键。我们需要建立多维度的ROI测算,不仅要考虑直接成本,还要评估质量效率提升和机会成本等间接效益。

以智能客服场景为例,一个成熟的Agent系统每日可处理300次标准化对话,相当于替代3名人工,按照每个人年薪15万元计算,人力成本节约达45万元/年;同时,Agent的24/7全天候服务能力可将平均响应时间从15分钟缩短至30秒,提升客户满意度约27%,间接带来的客户留存率提升价值可达60万元/年。通过这样的量化分析,我们能够为项目决策提供有力支撑,同时也为后续优化方向提供明确指标。

4.2. 技术架构设计

垂直领域Agent的技术架构设计需要充分考虑业务特性和性能要求,典型的分层架构包括感知层、推理层、执行层和反馈学习层四个核心部分。

  • 感知层负责多模态数据的接收和初步处理,如在金融风控场景中,需同时处理交易数据流、用户行为日志和外部信用评分等多源异构数据;
  • 推理层作为系统的"大脑",结合领域适配的大模型与知识图谱,实现对复杂场景的理解和决策推理,例如在法律助手应用中,需要将最新法规与历史判例进行语义关联,支持类案推理;
  • 执行层则负责将决策转化为实际行动,通过API编排调用外部系统,如在智能制造场景下,需要与MES、ERP等多个企业系统无缝集成,实现生产计划自动调整;
  • 反馈学习层则持续从用户互动和业务结果中收集数据,通过在线学习算法不断优化模型表现。

图片

关键技术选型需要平衡功能完备性、开发效率和维护成本。

  • 在对话管理方面,LangChain框架提供了灵活的Agent构建工具链,适合快速原型验证;而ModelScope-Agent则在中文场景和工具调用方面具有优势,适合面向国内用户的应用开发。
  • 记忆机制是保障Agent连贯交互体验的关键,采用向量数据库(如Milvus或Pinecone)存储对话历史,并结合衰减权重模型,能够实现长达数小时的上下文理解,使Agent在复杂咨询场景中保持连贯性。

此外,在高并发应用场景中,还需考虑引入Redis等内存数据库作为热点会话的缓存层,确保毫秒级的响应性能。技术栈的选择不仅要考虑当前需求,还需评估未来扩展性,为业务增长预留足够的技术弹性。

4.3. 数据工程实施

数据工程是垂直领域Agent性能优化的关键环节,其核心在于构建高质量的专业知识库。知识库构建流程始于全面的原始数据采集,需综合考虑公开文献、行业标准和企业内部资料等多种数据源。

以医疗AI助手为例,其知识库应包括医学教科书、临床指南、药品说明书以及匿名化的典型病例等多维度资料。采集后的数据需经过结构化处理,将非结构化文本转换为规范化的知识条目,包括概念抽取、关系识别和属性标注等步骤。接下来的数据标注环节相当重要,对于结构化数据如标准诊疗规范,需要经验丰富的临床专家进行审核标注;而对于非结构化数据如医学文献,则可采用众包标注与对抗学习相结合的半自动化方法,先由算法生成初步标注,再由人工校验纠错,形成高质量的标注结果。经过专业审核的数据将进入向量化存储阶段,采用适合领域特性的嵌入模型(如MedBERT等医疗领域预训练模型)生成语义向量,并构建高效的检索增强生成(RAG)索引,实现毫秒级的知识检索响应。

标注规范的制定需要充分结合行业标准和应用场景特点。在医疗场景中,疾病诊断必须遵循ICD-10疾病编码体系,确保与全球医疗信息系统的兼容性;药物标注则需采用ATC分类系统,以支持药物相互作用的自动检测;医疗程序则应按照CPT编码规范进行标注,便于与医保报销系统对接。在金融场景下,财务数据需符合XBRL可扩展商业报告语言标准,支持跨机构、跨国家的财务数据交换与分析;风险控制指标则需遵循巴塞尔协议III的定义体系,确保风险评估的准确性和一致性。标注过程中还需建立严格的质量控制机制,包括随机抽检、交叉验证和专家评审等多重保障措施,确保数据质量达到行业应用标准。高质量的标注数据不仅提升了Agent的专业表现,也为后续的模型微调提供了可靠基础。

典型行业应用模式

1. 医疗领域
  • 设计模式:多模态融合(文本+影像+传感器数据)

医疗领域的人工智能应用正在通过多模态融合技术实现前所未有的诊断精确度。这种设计模式整合了文本、医学影像和各类传感器数据,为临床决策提供全方位支持。以胸部CT影像分析Agent为例,该系统巧妙地集成了三大核心组件:基于ResNet-50的深度学习模型负责影像识别,该模型经过超过10万张胸部CT图像的训练,能够识别包括肺结节、肺气肿和间质性肺病在内的17种常见病变,准确率达到92.7%;BioBERT模型则专门针对医学语料进行了预训练,能够生成符合放射科医师语言习惯的结构化报告,大幅减少了报告编写时间;同时,系统通过FHIR标准接口与医院现有信息系统无缝对接,实现电子病历的实时同步,确保诊断信息在医疗工作流中的流畅传递。在三甲医院的临床试验中,该系统将医生的影像诊断时间从平均15分钟缩短至4分钟,同时提高了早期肺癌检出率约18%。

2. 教育领域

教育科技正在借助AI技术重塑传统教学模式。在备课环节,新一代备课助手通过整合Stable Diffusion和GPT-4等先进模型,显著提升了教师工作效率。具体而言,教师只需输入课程主题和关键概念,系统就能自动生成包含教学目标、重难点分析和教学活动设计的完整教案大纲。同时,Stable Diffusion模型根据课程内容自动生成符合年龄特点的教学插图,这些插图经过教育心理学原理优化,能有效提升学生的知识吸收率。在评估环节,基于Transformer架构的智能测评系统彻底改变了传统作文评分方式。该系统通过分析语义连贯性、论证逻辑和词汇多样性等多维度指标,实现了与人工评分高度一致的自动评分,误差率控制在3%以内。北京某重点中学的应用数据显示,教师使用该系统后,批改时间减少了78%,同时学生因获得即时反馈而显著提高了写作积极性和能力提升速度。

3. 工业制造

工业制造领域的AI应用正以其卓越的实时性能和可靠性引领智能制造革命。为满足现代工厂的苛刻需求,工程师们开发了高效的边缘计算部署方案,特别适用于设备预测性维护场景。该方案采用Rust语言实现核心逻辑,确保内存安全的同时提供接近C语言的性能表现。系统通过分布式传感器网络实现毫秒级数据采集,覆盖温度、振动、声音和电流等多维参数,随后将数据输入经过量化优化的ONNX格式模型进行异常检测推理。当系统检测到潜在故障征兆时,会立即触发维护API,实现对设备的智能干预。整个过程的端到端响应时间控制在50毫秒以内,同时系统架构支持产线级并发处理能力,可同时监控1000多台设备的运行状态。在某汽车零部件制造商的生产线上,该系统部署一年后,设备意外停机时间减少了43%,维护成本降低了28%,产品质量一次合格率提升了7.5%,充分展现了AI在工业场景中的实际价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值