师兄文章阅读-基于辐射源的雷达分类
原文《Mutation grey wolf elite PSO balanced XGBoost for radar emitter individual identification based on measured signals》-Shiqiang Zhao(刘老师为通讯作者)
*文章来源:陈师兄,based on 雷达的小样本分类识别项目(2022控制之旅)
emitter:发射器,elite:精英的,Mutation:突变的
supported by National Key
R&D Program of China(Grant NO. 2018YFB2004200),Zhejiang Provincial
Natural Science Foundation(LY 18D060002),National Natural Science
Foundation of China(61590921)*
核心内容:利用PSO的改进算法优化XGBoost算法,针对real radar signals,而非simulation signals
Introducation
段落 | 内容 |
---|---|
1 | the difference of radar emitter individual identification and radar emitter identification (REC)前者是一个更新的领域 |
2 | the latest progress of REC,including SVM,and the introduction of difference of channels |
3 | the summary of the REC methods(突出这种方法研究多利用simulation data, ACC easy to reduce when faced real situation) |
4 | 往individual 方向进行的原因,承接上一段,介绍了使用individual 的优点以及必要性(同种雷达的不同个体差异大) |
5 | the reason choose measured signals but not simulation signals (仿真数据与实际有差距) |
6 | the use of CNN and RVM,引出XGBoost |
7 | 改进XGBoost 的原因–hard to find which parameter should be adjust |
8 | the method used to improve XGBoost (mainly about how to find and adjust the parameters) |
9 | 段落结构介绍 |
Methodology
由4部分构成:GWEPSO-----MGWEPSO—BXGBoost—MGWEPSO-BXGBoost
1、use grey wolf elite改进PSO算法
main idea: choose one part which don’t participate in update
优势:避免局部最优解
2、use mutation 改进 GWEPSO
main idea:前述局部不参与迭代寻优容易导致局部最优,故而利用生物学中“突发”(mutation)概念,改进算法
3、balanced XGBoost
main idea:介绍一种广泛应用于分类研究的算法
4、MGWEPSO-BXGBoost
main idea:MGWEPSO-BXGBoost的组合原则,以及关键的参数配置信息
Experiments and results discussion
分为三个板块:介绍评判标准以及数据的归一化操作----在充分样本下的实验(完整样本)----在不充分样本下的实验(实际采样数据,有残缺)
1、实验的评判指标介绍
Precision Recall F1 Mprecision Mrecall MF1 Merror
2、24个个体,,每个采集200个样本,一共11150条样本数据进行分析
分别就前面提到的4中算法进行测试,按照评价指标列表对比结果。
3、19个个体,一共1408个样本数据进行分析(模拟真实情况下信息难以获取)
对比4种方法的评价指标
Conclusion
总结MGWEPSO-BXGBoost99.73%ACC的优势,强调当数据减少时准确地下降,值得进一步研究。描述该算法未来可以进一步对于小样本识别做出贡献,在优化、不平衡环境领域有前景、针对模式识别或系统识别有应用前景
Reference
一共50篇,引用了组里的文章
未来进组可以进一步询问的板块:
overall framework不是很clear