师兄文章阅读-基于辐射源的雷达分类

本文探讨了雷达发射器个体识别的最新进展,区别于传统的雷达发射器识别。研究采用实测信号而非模拟信号,以克服数据差距。通过优化XGBoost,结合灰狼精英和变异策略,提出MGWEPSO-BXGBoost方法,提高了在小样本情况下的识别准确性,达到99.73%的准确率。实验展示了在数据充足和不足情况下的性能,并指出该方法对未来小样本识别研究的潜力。
摘要由CSDN通过智能技术生成

师兄文章阅读-基于辐射源的雷达分类

原文《Mutation grey wolf elite PSO balanced XGBoost for radar emitter individual identification based on measured signals》-Shiqiang Zhao(刘老师为通讯作者)

*文章来源:陈师兄,based on 雷达的小样本分类识别项目(2022控制之旅)

emitter:发射器,elite:精英的,Mutation:突变的

supported by National Key
R&D Program of China(Grant NO. 2018YFB2004200),Zhejiang Provincial
Natural Science Foundation(LY 18D060002),National Natural Science
Foundation of China(61590921)*

核心内容:利用PSO的改进算法优化XGBoost算法,针对real radar signals,而非simulation signals

Introducation

段落内容
1the difference of radar emitter individual identification and radar emitter identification (REC)前者是一个更新的领域
2the latest progress of REC,including SVM,and the introduction of difference of channels
3the summary of the REC methods(突出这种方法研究多利用simulation data, ACC easy to reduce when faced real situation)
4往individual 方向进行的原因,承接上一段,介绍了使用individual 的优点以及必要性(同种雷达的不同个体差异大)
5the reason choose measured signals but not simulation signals (仿真数据与实际有差距)
6the use of CNN and RVM,引出XGBoost
7改进XGBoost 的原因–hard to find which parameter should be adjust
8the method used to improve XGBoost (mainly about how to find and adjust the parameters)
9段落结构介绍

Methodology

由4部分构成:GWEPSO-----MGWEPSO—BXGBoost—MGWEPSO-BXGBoost

1、use grey wolf elite改进PSO算法

main idea: choose one part which don’t participate in update

优势:避免局部最优解

2、use mutation 改进 GWEPSO

main idea:前述局部不参与迭代寻优容易导致局部最优,故而利用生物学中“突发”(mutation)概念,改进算法

3、balanced XGBoost

main idea:介绍一种广泛应用于分类研究的算法

4、MGWEPSO-BXGBoost

main idea:MGWEPSO-BXGBoost的组合原则,以及关键的参数配置信息

Experiments and results discussion

分为三个板块:介绍评判标准以及数据的归一化操作----在充分样本下的实验(完整样本)----在不充分样本下的实验(实际采样数据,有残缺)

1、实验的评判指标介绍

Precision Recall F1 Mprecision Mrecall MF1 Merror

2、24个个体,,每个采集200个样本,一共11150条样本数据进行分析

分别就前面提到的4中算法进行测试,按照评价指标列表对比结果。

3、19个个体,一共1408个样本数据进行分析(模拟真实情况下信息难以获取)

对比4种方法的评价指标

Conclusion

总结MGWEPSO-BXGBoost99.73%ACC的优势,强调当数据减少时准确地下降,值得进一步研究。描述该算法未来可以进一步对于小样本识别做出贡献,在优化、不平衡环境领域有前景、针对模式识别或系统识别有应用前景

Reference

一共50篇,引用了组里的文章

未来进组可以进一步询问的板块:

overall framework不是很clear

整体流程图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值