有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
==== A B A-B
经实验 ||0 0 | 0
====|||2 1 | 1
====|||3 5 | 2
====|||4 7 | 3
……
均为必败策略
由于某种奇特的证明 a【i】=(sqrt(5)+1)/2
然后就没有然后了
var k,l,m,n:longint;
p:double;
begin
while not(eoln) do begin readln(n,m);
if m>n then begin k:=m; m:=n; n:=k; end;
l:=n-m;
p:=l*((sqrt(5)+1)/2);
if (n<>trunc(p)+l)or(m<>trunc(p)) then writeln(1) else writeln(0);
end;
end.