这个不等式结论是19/1/13写关于圆锥曲线求线段比值最大值时发现的。
结论
设 m , n , a , b > 0 m,n,a,b>0 m,n,a,b>0
若
x
>
y
x>y
x>y 则
m
a
2
+
n
b
2
+
x
a
b
m
a
2
+
n
b
2
+
y
a
b
⩽
2
m
n
+
x
2
m
n
+
y
\frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} \leqslant \frac{2\sqrt{mn}+x}{2\sqrt{mn}+y}
ma2+nb2+yabma2+nb2+xab⩽2mn+y2mn+x
若
x
<
y
x<y
x<y 则
m
a
2
+
n
b
2
+
x
a
b
m
a
2
+
n
b
2
+
y
a
b
⩾
2
m
n
+
x
2
m
n
+
y
\frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} \geqslant \frac{2\sqrt{mn}+x}{2\sqrt{mn}+y}
ma2+nb2+yabma2+nb2+xab⩾2mn+y2mn+x
证明
m
a
2
+
n
b
2
+
x
a
b
m
a
2
+
n
b
2
+
y
a
b
=
1
+
x
−
y
m
a
b
+
n
b
a
+
y
\frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} = 1+\frac{x-y}{\frac{ma}{b}+\frac{nb}{a}+y}
ma2+nb2+yabma2+nb2+xab=1+bma+anb+yx−y
然后分类讨论
x
x
x 与
y
y
y 的大小关系,利用基本不等式可以得到以上结论。
例一
若实数 x , y x,y x,y 满足 4 x 2 − 5 x y + 4 y 2 = 5 4x^2-5xy+4y^2=5 4x2−5xy+4y2=5 ,则 x 2 + y 2 x^2+y^2 x2+y2 的最大值为多少?
由以上结论可得
4
x
2
+
4
y
2
4
x
2
+
4
y
2
−
5
x
y
⩽
2
4
×
4
+
0
2
4
×
4
−
5
=
8
3
\frac{4x^2+4y^2}{4x^2+4y^2-5xy} \leqslant \frac{2\sqrt{4 \times 4}+0}{2\sqrt{4 \times 4}-5} = \frac{8}{3}
4x2+4y2−5xy4x2+4y2⩽24×4−524×4+0=38
即
4
(
x
2
+
y
2
)
5
⩽
8
3
\frac{4(x^2+y^2)}{5} \leqslant \frac{8}{3}
54(x2+y2)⩽38
故
x
2
+
y
2
⩽
10
3
x^2+y^2 \leqslant \frac{10}{3}
x2+y2⩽310
例二
若实数 x , y x,y x,y 满足 x 2 + y 2 + x y = 1 x^2+y^2+xy=1 x2+y2+xy=1 ,则 x + y x+y x+y 的最大值为多少?
由以上结论可得
x
+
y
⩽
x
2
+
y
2
+
2
x
y
=
x
2
+
y
2
+
2
x
y
x
2
+
y
2
+
x
y
⩽
2
+
2
2
+
1
=
2
3
3
x+y \leqslant \sqrt{x^2+y^2+2xy} = \sqrt{\frac{x^2+y^2+2xy}{x^2+y^2+xy}} \leqslant \sqrt{\frac{2+2}{2+1}}=\frac{2\sqrt{3}}{3}
x+y⩽x2+y2+2xy=x2+y2+xyx2+y2+2xy⩽2+12+2=323
说明
笔者个人博客网站:https://hk-shao.github.io/
最新文章和更新都会在这里