一个简单的不等式结论

这个不等式结论是19/1/13写关于圆锥曲线求线段比值最大值时发现的。

结论

m , n , a , b > 0 m,n,a,b>0 m,n,a,b>0

x > y x>y x>y
m a 2 + n b 2 + x a b m a 2 + n b 2 + y a b ⩽ 2 m n + x 2 m n + y \frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} \leqslant \frac{2\sqrt{mn}+x}{2\sqrt{mn}+y} ma2+nb2+yabma2+nb2+xab2mn +y2mn +x

x &lt; y x&lt;y x<y
m a 2 + n b 2 + x a b m a 2 + n b 2 + y a b ⩾ 2 m n + x 2 m n + y \frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} \geqslant \frac{2\sqrt{mn}+x}{2\sqrt{mn}+y} ma2+nb2+yabma2+nb2+xab2mn +y2mn +x

证明

m a 2 + n b 2 + x a b m a 2 + n b 2 + y a b = 1 + x − y m a b + n b a + y \frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} = 1+\frac{x-y}{\frac{ma}{b}+\frac{nb}{a}+y} ma2+nb2+yabma2+nb2+xab=1+bma+anb+yxy
然后分类讨论 x x x y y y 的大小关系,利用基本不等式可以得到以上结论。

例一

若实数 x , y x,y x,y 满足 4 x 2 − 5 x y + 4 y 2 = 5 4x^2-5xy+4y^2=5 4x25xy+4y2=5 ,则 x 2 + y 2 x^2+y^2 x2+y2 的最大值为多少?

由以上结论可得
4 x 2 + 4 y 2 4 x 2 + 4 y 2 − 5 x y ⩽ 2 4 × 4 + 0 2 4 × 4 − 5 = 8 3 \frac{4x^2+4y^2}{4x^2+4y^2-5xy} \leqslant \frac{2\sqrt{4 \times 4}+0}{2\sqrt{4 \times 4}-5} = \frac{8}{3} 4x2+4y25xy4x2+4y224×4 524×4 +0=38

4 ( x 2 + y 2 ) 5 ⩽ 8 3 \frac{4(x^2+y^2)}{5} \leqslant \frac{8}{3} 54(x2+y2)38

x 2 + y 2 ⩽ 10 3 x^2+y^2 \leqslant \frac{10}{3} x2+y2310

例二

若实数 x , y x,y x,y 满足 x 2 + y 2 + x y = 1 x^2+y^2+xy=1 x2+y2+xy=1 ,则 x + y x+y x+y 的最大值为多少?

由以上结论可得
x + y ⩽ x 2 + y 2 + 2 x y = x 2 + y 2 + 2 x y x 2 + y 2 + x y ⩽ 2 + 2 2 + 1 = 2 3 3 x+y \leqslant \sqrt{x^2+y^2+2xy} = \sqrt{\frac{x^2+y^2+2xy}{x^2+y^2+xy}} \leqslant \sqrt{\frac{2+2}{2+1}}=\frac{2\sqrt{3}}{3} x+yx2+y2+2xy =x2+y2+xyx2+y2+2xy 2+12+2 =323

说明

笔者个人博客网站:https://hk-shao.github.io/
最新文章和更新都会在这里

### 三角不等式的数学定义 三角不等式是指对于任意实数或向量 \(a\) 和 \(b\),其绝对值满足如下关系: \[ |a + b| \leq |a| + |b| \] 这一性质可以推广至更一般的情况,比如多个变量相加的情形。例如,若有三个变量,则有: \[ |a + b + c| \leq |a| + |b| + |c| \] 此不等式的核心在于强调距离的累积效应不会小于单个部分的距离之和[^1]。 ### 示例说明 以下是几个具体的例子来展示如何应用三角不等式: #### 实例一:简单数值计算 假设给定两个实数 \(a = 3\) 和 \(b = -2\),则验证三角不等式成立的过程如下: \[ |3 + (-2)| = |1| = 1, \quad |3| + |-2| = 3 + 2 = 5. \] 显然, \[ |3 + (-2)| \leq |3| + |-2|. \] 这表明该实例符合三角不等式的条件[^2]。 #### 实例二:几何解释 如果把上述不等式放在二维平面上考虑,设两点分别为 \(A(x_1, y_1)\) 和 \(B(x_2, y_2)\),那么它们之间的欧几里得距离可表示为: \[ d(A,B) = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}. \] 此时,若引入第三个点 \(C(x_3, y_3)\),则由三角形三边的关系可知: \[ d(A,C) + d(C,B) \geq d(A,B). \] 这种形式正是三角不等式在平面几何中的体现。 ```python import math def euclidean_distance(p1, p2): return math.sqrt((p2[0]-p1[0])**2 + (p2[1]-p1[1])**2) # Example points A(0,0), B(3,4), C(6,8) point_A = (0, 0) point_B = (3, 4) point_C = (6, 8) distance_AC_plus_CB = euclidean_distance(point_A, point_C) + euclidean_distance(point_C, point_B) distance_AB = euclidean_distance(point_A, point_B) print(f"d(A,C)+d(C,B): {distance_AC_plus_CB}") print(f"d(A,B): {distance_AB}") assert distance_AC_plus_CB >= distance_AB, "Triangle inequality violated" ``` ### 结论 通过以上理论阐述与实际案例演示可以看出,无论是在代数还是几何领域内,三角不等式都扮演着极其重要的角色,并且能够帮助我们更好地理解和解决许多复杂问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值