一个简单的不等式结论

这个不等式结论是19/1/13写关于圆锥曲线求线段比值最大值时发现的。

结论

m , n , a , b > 0 m,n,a,b>0 m,n,a,b>0

x > y x>y x>y
m a 2 + n b 2 + x a b m a 2 + n b 2 + y a b ⩽ 2 m n + x 2 m n + y \frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} \leqslant \frac{2\sqrt{mn}+x}{2\sqrt{mn}+y} ma2+nb2+yabma2+nb2+xab2mn +y2mn +x

x &lt; y x&lt;y x<y
m a 2 + n b 2 + x a b m a 2 + n b 2 + y a b ⩾ 2 m n + x 2 m n + y \frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} \geqslant \frac{2\sqrt{mn}+x}{2\sqrt{mn}+y} ma2+nb2+yabma2+nb2+xab2mn +y2mn +x

证明

m a 2 + n b 2 + x a b m a 2 + n b 2 + y a b = 1 + x − y m a b + n b a + y \frac{ma^2+nb^2+xab}{ma^2+nb^2+yab} = 1+\frac{x-y}{\frac{ma}{b}+\frac{nb}{a}+y} ma2+nb2+yabma2+nb2+xab=1+bma+anb+yxy
然后分类讨论 x x x y y y 的大小关系,利用基本不等式可以得到以上结论。

例一

若实数 x , y x,y x,y 满足 4 x 2 − 5 x y + 4 y 2 = 5 4x^2-5xy+4y^2=5 4x25xy+4y2=5 ,则 x 2 + y 2 x^2+y^2 x2+y2 的最大值为多少?

由以上结论可得
4 x 2 + 4 y 2 4 x 2 + 4 y 2 − 5 x y ⩽ 2 4 × 4 + 0 2 4 × 4 − 5 = 8 3 \frac{4x^2+4y^2}{4x^2+4y^2-5xy} \leqslant \frac{2\sqrt{4 \times 4}+0}{2\sqrt{4 \times 4}-5} = \frac{8}{3} 4x2+4y25xy4x2+4y224×4 524×4 +0=38

4 ( x 2 + y 2 ) 5 ⩽ 8 3 \frac{4(x^2+y^2)}{5} \leqslant \frac{8}{3} 54(x2+y2)38

x 2 + y 2 ⩽ 10 3 x^2+y^2 \leqslant \frac{10}{3} x2+y2310

例二

若实数 x , y x,y x,y 满足 x 2 + y 2 + x y = 1 x^2+y^2+xy=1 x2+y2+xy=1 ,则 x + y x+y x+y 的最大值为多少?

由以上结论可得
x + y ⩽ x 2 + y 2 + 2 x y = x 2 + y 2 + 2 x y x 2 + y 2 + x y ⩽ 2 + 2 2 + 1 = 2 3 3 x+y \leqslant \sqrt{x^2+y^2+2xy} = \sqrt{\frac{x^2+y^2+2xy}{x^2+y^2+xy}} \leqslant \sqrt{\frac{2+2}{2+1}}=\frac{2\sqrt{3}}{3} x+yx2+y2+2xy =x2+y2+xyx2+y2+2xy 2+12+2 =323

说明

笔者个人博客网站:https://hk-shao.github.io/
最新文章和更新都会在这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值