漫步数理统计十四——重要的不等式

本篇博文给出涉及期望的三个不等式的证明,之后我们会经常遇到这些不等式,首先介绍一个有用的结论。

1 X 表示随机变量,m是一个正整数,假设 E[Xm] 存在,如果 k 是一个正数且km,那么 E[Xk] 存在。

我们证明连续情况;离散情况与之类似,只需要将积分符号换成求和符号即可,令 f(x) X 的pdf,那么

|x|kf(x)dx=|x|1|x|kf(x)dx+|x|>1|x|kf(x)dx|x|1f(x)dx+|x|>1|x|mf(x)dxf(x)dx+|x|mf(x)dx1+E[|X|m]<

得证。

2 (马尔科夫不等式)令 u(X) 是随机变量 X 的非负函数,如果E[u(X)]存在,那么对于每个正常数 c

P[u(X)c]E[u(X)]c

这里给出连续情况的证明;对于离散情况,只需要将积分符号改成求和符号即可。令 A={x:u(x)c} f(x) 表示 X 的pdf,那么

E[u(X)]=u(x)f(x)dx=Au(x)f(x)dx+Acu(x)f(x)dx

上式最右边的每个被积函数都是正的,所以左边大于或等于右边任何一项,特别地

E[u(X)]Au(x)f(x)dx

然而,如果 xA ,那么 u(x)c ,所以我们用 c 代替上式右边u(x)的话,不等式不会增加,即

E[u(X)]cAf(x)dx

因为

Af(x)dx=P(XA)=P[u(X)c]

从而得到

E[u(X)]cP[u(X)c]

得证。

前面这个不等式是切比雪夫不等式的推广,具体如下定理所述。

3 (切比雪夫不等式) X 是一个随机变量且概率分布的方差sigma2是有限的(根据定理1,这意味着均值 μ=E(X) 存在),那么对于任意 k>0

P(|Xμ|kσ)1k2

或者等价的

P(|Xμ|<kσ)11k2

利用定理2中取 u(X)=(Xμ)2,c=k2σ2 ,那么我们有

P[(Xμ)2k2σ2]E[(Xμ)2]k2σ2

因为这个不等式右边的分子是 σ2 ,所以可以写成

P(|Xμ|kσ)1k2

得证。当然这里的 k 是大于1的整数。

切比雪夫不等式有一个简洁的形式,可以取kσ=ϵ,其中 ϵ>0 ,这是不等式就变成

P(|Xμ|ϵ)σ2ϵ2,for all ϵ>0

因此 1/k2 是概率 P(|Xμ|kσ) 的上界,接下来我们给出一些实例中的上界与概率的准确值。

1 X 的pdf为

f(x)={12303<x<3elsewhere

这里 μ=0,σ2=1 ,如果 k=32 ,我们有准确的概率值

P(|Xμ|kσ)=P(|X|32)=13/23/2123dx=132

根据切比雪夫不等式,这个概率上界为 1/k2=49 ,因为近似 13/2=0.134 ,这是准确值远小于上界 4/9 。如果取 k=2 ,我们得到的准确值是 P(|Xμ|2σ)=P(|X|2)=0 ,依然远小于上界 1/k2=1/4

在上面的例子中,概率 P(|Xμ|kσ) 与上界 1/k2 差别较大。然而,如果我们希望不等式对所有 k>0 成立且对所有有有限方差的随机变量成立,那么就不可能再提高了,如下所示。

2 X 是离散型随机变量,在点x=1,0,1处概率分别为 18,68,18 。这里 μ=0,σ2=14 。如果 k=2 ,那么 1/k2=14,P(|Xμ|kσ)=P(|X|1) ,即 P(|Xμ|kσ) 等于上界 1/k2=1/4 ,因此在没有给出 X 分布的进一步假设的情况下,不等式无法提高了。

1定义在区间 (a,b),a<b 上的函数 ϕ ,如果对于 (a,b) 上的所有 x,y 以及所有的 0<γ<1 ,不等式

ϕ[γx+(1γ)y]γϕ(x)+(1γ)ϕ(y)

成立,那么函数 ϕ(x) 称为凸函数,如果上面的不等式是严格的,那么称 ϕ 是严格凸函数。

在一阶与二阶导存在的情况下,下面的不等式成立。

4 如果 ϕ (a,b) 上可微,那么

  1. 对于所有的 a<x<y<b ,当且仅当 ϕ(x)ϕ′′(y) 时, ϕ 是凸的。
  2. 对于所有的 a<x<y<b ,当且仅当 ϕ(x)<ϕ′′(y) 时, ϕ 是严格凸的。

如果 ϕ (a,b) 上二阶可微,那么

  1. 对于所有的 a<x<y<b ,当且仅当 ϕ′′(x)0 时, ϕ 是凸的。
  2. 对于所有的 a<x<y<b ,当且仅当 ϕ′′(y)>0 时, ϕ 是严格凸的。

当然这个定理的第二部分可以从第一部分直接导出,而第一部分直观上也比较好理解,具体证明可以参考一些分析的书。下面给出一个非常有用的关于凸的不等式。

5 (詹森不等式)如果 ϕ 在开集 I 上是凸的,X是随机变量,其支撑含于 I 中且有有限期望,那么

ϕ[E(X)]E[ϕ(X)]

如果 ϕ 严格凸,那么不等式是严格的,除非 X 是一个常随机变量。

假设 ϕ 有二阶导, ϕ(x) u=E[X] 处进行泰勒级数展开:

ϕ(x)=ϕ(μ)+ϕ(μ)(xmu)+ϕ′′(zeta)(xμ)22

其中 ζ 位于 x,μ 之间。因为上式的最后一项是正的,所以我们有

ϕ(x)ϕ(μ)+ϕ(μ)(xμ)

两边分别取期望即可得到所要的结论。假设 X 不是常量,那么如果对于所有的x(a,b),ϕ′′(x)>0,则不等式是严格凸的。

3 X 是非退化随机变量,均值为μ且有有限的二阶矩,那么 μ<E(X2) 。这个结论可以利用詹森不等式得到,需要用到严格凸函数 ϕ(t)=t2

4 (调和与几何平均)令 {a1,,an} 是正数集合,对每个数 a1,,an 分配权重 1/n 就得到一个随机变量 X 的分布,那么X的均值就是算数平均(AM), E(X)=n1Σni=1ai ,又因为 logx 是凸函数,所以利用詹森不等式可得

log(1ni=1nai)E(logX)=1ni=1nlogai=log(a1a2an)1/n

或者等价的

log(1ni=1nai)log(a1a2an)1/n

因此

(a1a2an)1/n1ni=1nai

不等式左边称为几何平均(GM),所有上面的不等式等价于对任意有限正数集, GMAM

现在用 1/ai 代替 ai ,(也是正值),那么我们就得到

1ni=1n1ai(1a11a21an)1/n

或者等价的

11nΣni=11ai(a1a2an)1/n

不等式的左边称为调和级数(HM),从而我们得出对任意正数集合

HMGMAM

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值