前言
之前学习了OpenCV的一些基本操作,但终究是图片处理,有些干,回学校后拿到openmv模块开始进行一些相关操作。
openmv是什么
还有一些扩展模块可选用,but
价格劝退,选用了标配版
参数来源淘宝,它有没有夸张就不知道了
openmv入手教程
上面这个是官方教程有很多例程讲的也十分详细,对新手十分友好
进阶的openmv教程
一些基本参数
感光元件(也就是你IDE窗口看到的图像)
import sensor#引入感光元件的模块
# 设置摄像头
sensor.reset()#初始化感光元件
sensor.set_pixformat(sensor.RGB565)#设置为彩色
sensor.set_framesize(sensor.QVGA)#设置图像的大小
sensor.skip_frames()#跳过n张照片,在更改设置后,跳过一些帧,等待感光元件变稳定。
# 一直拍照
while(True):
img = sensor.snapshot()#拍摄一张照片,img为一个image对象
sensor.set_pixformat() 设置像素模式。
sensor.GRAYSCALE: 灰度,每个像素8bit。
sensor.RGB565: 彩色,每个像素16bit。
从这里可以看出若转换为灰度像素是减半的
以下列出了图像的一些参数
sensor.set_framesize() 设置图像的大小
sensor.QQCIF: 88x72
sensor.QCIF: 176x144
sensor.CIF: 352x288
sensor.QQSIF: 88x60
sensor.QSIF: 176x120
sensor.SIF: 352x240
sensor.QQQQVGA: 40x30
sensor.QQQVGA: 80x60
sensor.QQVGA: 160x120
sensor.QVGA: 320x240
sensor.VGA: 640x480
sensor.HQQQVGA: 80x40
sensor.HQQVGA: 160x80
sensor.HQVGA: 240x160
sensor.B64X32: 64x32 (用于帧差异 image.find_displacement())
sensor.B64X64: 64x64 用于帧差异 image.find_displacement())
sensor.B128X64: 128x64 (用于帧差异 image.find_displacement())
sensor.B128X128: 128x128 (用于帧差异 image.find_displacement())
sensor.LCD: 128x160 (用于LCD扩展板)
sensor.QQVGA2: 128x160 (用于LCD扩展板)
sensor.WVGA: 720x480 (用于 MT9V034)
sensor.WVGA2:752x480 (用于 MT9V034)
sensor.SVGA: 800x600 (仅用于 OV5640 感光元件)
sensor.XGA: 1024x768 (仅用于 OV5640 感光元件)
sensor.SXGA: 1280x1024 (仅用于 OV5640 感光元件)
sensor.UXGA: 1600x1200 (仅用于 OV5640 感光元件)
sensor.HD: 1280x720 (仅用于 OV5640 感光元件)
sensor.FHD: 1920x1080 (仅用于 OV5640 感光元件)
sensor.QHD: 2560x1440 (仅用于 OV5640 感光元件)
sensor.QXGA: 2048x1536 (仅用于 OV5640 感光元件)
sensor.WQXGA: 2560x1600 (仅用于 OV5640 感光元件)
sensor.WQXGA2: 2592x1944 (仅用于 OV5640 感光元件)
我认为,mv比较nb的地方就是自动增益了,以下开启
sensor.set_auto_gain() 自动增益开启(True)或者关闭(False)。在使用颜色追踪时,需要关闭自动增益。
sensor.set_auto_whitebal() 自动白平衡开启(True)或者关闭(False)。在使用颜色追踪时,需要关闭自动白平衡。
sensor.set_auto_exposure(enable[\, exposure_us])
enable 打开(True)或关闭(False)自动曝光。默认打开。
如果 enable 为False, 则可以用 exposure_us 设置一个固定的曝光时间(以微秒为单位)。
设置翻转
sensor.set_hmirror(True)
水平方向翻转
sensor.set_vflip(True)
垂直方向翻转 vflip的英文就是垂直镜像
image.difference(image)
从这张图片减去另一个图片。比如,对于每个通道的每个像素点,取相减绝对值操作。这个函数,经常用来做移动检测。
统计信息
画图
画线
image.draw_line(line_tuple, color=White) 在图像中画一条直线。
line_tuple的格式是(x0, y0, x1, y1),意思是(x0, y0)到(x1, y1)的直线。
颜色可以是灰度值(0-255),或者是彩色值(r, g, b)的tupple。默认是白色
画框
image.draw_rectangle(rect_tuple, color=White) 在图像中画一个矩形框。
rect_tuple 的格式是 (x, y, w, h)。
画圆
image.draw_circle(x, y, radius, color=White) 在图像中画一个圆。
x,y是圆心坐标
radius是圆的半径
画十字
image.draw_cross(x, y, size=5, color=White) 在图像中画一个十字
x,y是坐标
size是两侧的尺寸
写字
image.draw_string(x, y, text, color=White) 在图像中写字 8x10的像素
x,y是坐标。使用\n, \r, and \r\n会使光标移动到下一行。
text是要写的字符串。
测距
# Measure the distance
#
# This example shows off how to measure the distance through the size in imgage
# This example in particular looks for yellow pingpong ball.
import sensor, image, time
# For color tracking to work really well you should ideally be in a very, very,
# very, controlled enviroment where the lighting is constant...
yellow_threshold = ( 56, 83, 5, 57, 63, 80)
# You may need to tweak the above settings for tracking green things...
# Select an area in the Framebuffer to copy the color settings.
sensor.reset() # Initialize the camera sensor.
sensor.set_pixformat(sensor.RGB565) # use RGB565.
sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
sensor.skip_frames(10) # Let new settings take affect.
sensor.set_auto_whitebal(False) # turn this off.
clock = time.clock() # Tracks FPS.
K=5000#the value should be measured
while(True):
clock.tick() # Track elapsed milliseconds between snapshots().
img = sensor.snapshot() # Take a picture and return the image.
blobs = img.find_blobs([yellow_threshold])
if len(blobs) == 1:
# Draw a rect around the blob.
b = blobs[0]
img.draw_rectangle(b[0:4]) # rect
img.draw_cross(b[5], b[6]) # cx, cy
Lm = (b[2]+b[3])/2
length = K/Lm
print(length)
#print(clock.fps()) # Note: Your OpenMV Cam runs about half as fast while
# connected to your computer. The FPS should increase once disconnected.
具体原理
测距
颜色形状同时识别
import sensor, image, time
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False) # must be turned off for color tracking
sensor.set_auto_whitebal(False) # must be turned off for color tracking
clock = time.clock()
while(True):
clock.tick()
img = sensor.snapshot().lens_corr(1.8)
for c in img.find_circles(threshold = 3500, x_margin = 10, y_margin = 10, r_margin = 10,
r_min = 2, r_max = 100, r_step = 2):
area = (c.x()-c.r(), c.y()-c.r(), 2*c.r(), 2*c.r())
#area为识别到的圆的区域,即圆的外接矩形框
statistics = img.get_statistics(roi=area)#像素颜色统计
print(statistics)
#(0,100,0,120,0,120)是红色的阈值,所以当区域内的众数(也就是最多的颜色),范围在这个阈值内,就说明是红色的圆。
#l_mode(),a_mode(),b_mode()是L通道,A通道,B通道的众数。
if 0<statistics.l_mode()<100 and 0<statistics.a_mode()<127 and 0<statistics.b_mode()<127:#if the circle is red
img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))#识别到的红色圆形用红色的圆框出来
else:
img.draw_rectangle(area, color = (255, 255, 255))
#将非红色的圆用白色的矩形框出来
print("FPS %f" % clock.fps())
忠告忠告!
实验室有个师兄就这样烧坏一个openmv4,心疼啊T T
这个很重要
后续再补神经网络,如果有兴趣的小伙伴等不及可联系我