目录
1.算法仿真效果
matlab2013b仿真结果如下:
使用一个二值图进行测试,并加入不同的均衡算法进行对比:
2.算法涉及理论知识概要
LDPC码是麻省理工学院Robert Gallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分析和研究,译码简单且可实行并行操作,适合硬件实现。
LDPC 码可以通过校验矩阵 H 来唯一确定,校验矩阵 H 是大小为m*n 的稀疏矩阵,其中m 为校验位长度,n 为 LDPC 码码长,信息位长度为 k =n-m 。LDPC 码可以分为规则 LDPC 码和非规则 LDPC 码两种[3]。规则 LDPC 码的校验矩阵中不仅每一行中非零元素的个数是相同的,而且每一列中非零元素的个数也是相同的,而非规则LDPC码则不受到该条件的限制。下图给出的是一种规则LDPC码的校验矩阵。
除了使用校验矩阵的方式来表示 LDPC 码之外,Tanner 在 1981 年提出的用 Tanner图来描述码字的方法可以形象的表示 LDPC 码的特性[4]。下图中表示的 Tanner 图与上图中的校验矩阵相对应。
空时分组码(STBC)是一种在无线通信中使用的技术,用于在多个天线上发送数据流的多个副本,并利用各种接收的数据版本来提高数据传输的可靠性。
空时分组码(STBC)与正交频分复用(OFDM)相结合的STBC-OFDM技术可以有效对抗多径效应和频率选择性衰落,在复杂通信环境中提高传输效率,降低误码率,并且编译码简单。在Matlab中构建STBC-OFDM系统仿真平台,进行了仿真系统参数的选择,并根据各种不同的信道环境,对系统误码特性进行了评估。仿真结果主要仿真了不同天线数、不同调制、不同多普勒、不同时延扩展的影响.
在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽要宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。
OFDM主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ISI) 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上可以看成平坦性衰落,从而可以消除码间串扰,而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
通常的数字调制都是在单个载波上进行,如PSK、QAM等。这种单载波的调制方法易发生码间干扰而增加误码率,而且在多径传播的环境中因受瑞利衰落的影响而会造成突发误码。若将高速率的串行数据转换为若干低速率数据流,每个低速数据流对应一个载波进行调制,组成一个多载波的同时调制的并行传输系统。这样将总的信号带宽划分为N个互不重叠的子通道(频带小于Δf),N个子通道进行正交频分多重调制,就可克服上述单载波串行数据系统的缺陷。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM, W-OFDM, F-OFDM, MIMO-OFDM,多带-OFDM。OFDM中的各个载波是相互正交的,每个载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便减小了载波间的干扰。由于载波间有部分重叠,所以它比传统的FDMA提高了频带利用率。
空时分组码是一种在无线通信中使用的技术,用于在多个天线上发送数据流的多个副本,并利用各种接收的数据版本来提高数据传输的可靠性。 传输信号必须穿过具有散射,反射,折射等的潜在困难环境,然后可能被接收器中的热噪声进一步破坏,这意味着一些接收到的数据副本将比其他更好。 这种冗余导致能够使用一个或多个接收到的副本来正确解码接收信号的机会更高。 实际上,空时编码以最佳方式组合所接收信号的所有副本,以尽可能多地从每个副本中提取信息。
STBC通常由矩阵表示。每行代表一个时隙,每列代表一个天线随时间的传输。
最初引入的STBC和通常研究的STBC是正交的。 这意味着STBC被设计成使得表示从编码矩阵中取出的任何列对的矢量是正交的。 其结果是接收器处的简单,线性,最佳解码。 其最严重的缺点是,除了满足此标准的一个代码之外的所有代码都必须牺牲其数据速率的某些比例
西亚瓦什·阿拉穆蒂(Siavash Alamouti)在1998年发明了所有STBC中最简单的,尽管他自己并没有使用“时空分组码”这个术语。它设计用于双发射天线系统,并具有编码矩阵:
这是一个非常特殊的STBC。它是唯一达到率-1的正交STBC。也就是说,它是唯一能够在不需要牺牲数据速率的情况下实现其全部分集增益的STBC。严格地说,这仅适用于复杂的调制符号。由于几乎所有的星座图都依赖于复数,因此该属性通常使Alamouti的代码比高阶STBC具有显着的优势,即使它们实现了更好的错误率性能。
Alamouti在1998年提出的建议的重要性在于它首次证明了一种编码方法,它能够在接收机上实现线性处理的完全多样性。早期关于发射分集的提议需要处理方案,其与发射天线的数量成指数地缩放。此外,它是第一个具有这种能力的开环发射分集技术。随后对Alamouti概念的概括已经对无线通信行业产生了巨大影响。
3.MATLAB核心程序
...............................................................................
SNRs = 10;%可修改参数
Modes = 4; %只支持QPSK
isldpc = 1;
%OFDM长度
Nfft = 512;
%子载波数目
NCarrier = 64;
%符号数/载波
Nsymbols = 8;
%循环前缀长度
Ncp = 10;
Nadder = Nfft+Ncp;
%位数/符号
Nbits = log2(Modes);
%LDPC相关参数
Rl = 0.5;%设置码率为
Nl = Nsymbols*NCarrier;
Ml = Nl*Rl;
Hl = mackay(Ml,Nl);
%发送天线矩阵
Tr_matrix =[1 2;-2+j 1+j];
NTr_matrix= size(Tr_matrix,1);
Nt = size(Tr_matrix',2); %发射天线数目
Nr = 2; %接收天线数目
%发射
[Nxx,data_eta,data_delta,data_eps,data_cojm] = func_trans_x(Nt,Tr_matrix,NTr_matrix);
%子载波
Carriers = (1: NCarrier) + (floor(Nfft/4) - floor(NCarrier/2));
Len_carriers = Nfft-Carriers+2;
Tx_training = func_training_symbol(Nt,NCarrier);
Nbase = NCarrier * Nsymbols;
LENS = 1000;
II = im2bw(imresize(rgb2gray(imread('a.jpg')),[Nbase/2,Nbase/2]));
%绘图信息存储矩阵
IMAGE = zeros(Nbase/2,Nbase/2);
IMAGE = II;
figure;
subplot(121);
imshow(IMAGE);
title('原始图像');
IMAGE2 = zeros(Nbase/2,Nbase/2);
Bers=zeros(length(SNRs),1);
for j_snr = 1:length(SNRs)
CNT = 0;
error = 0;
while CNT <= 127;
SNRs(j_snr)
error
CNT = CNT + 1;
Nerror = zeros(1,Nr);
data_buffer1 = zeros(NCarrier,Nsymbols,Nr);
data_bits = zeros(Nbase,Nbits,Nr);
N0 = 2*10^(-SNRs(j_snr)/10);
%生成随机数用于仿真
if isldpc == 1;
%Tsignal0 = round(rand(Nbase/2,Nbits));
Tsignal0 = IMAGE(:,2*CNT-1:2*CNT);
Tsignal = [Tsignal0;Tsignal0];
%LDPC
HS = cell(1,Nbits);
for ix = 1:Nbits
[ldpc_code,newH] = func_Enc(Tsignal0(:,ix),Hl);
Tsignal(:,ix) = [ldpc_code;Tsignal0(:,ix)];
HS{ix} = newH;
end
end
if isldpc == 0;
Tsignal0 = round(rand(Nbase,Nbits));
Tsignal = [Tsignal0];
end
Tsignal2 = bi2de(Tsignal);
%PSK/QAM调制
if Modes == 2 | Modes == 4
Tsignal_mod = pskmod(Tsignal2,Modes,0);
end
if Modes == 16 | Modes == 64
Tsignal_mod = qammod(Tsignal2,Modes,0);
end
Tcar_mat = reshape(Tsignal_mod,NCarrier,Nsymbols);
for st1=1:Nt:Nsymbols
data = [];
for st2=1:Nt
data=[data;Tcar_mat(:,st1+st2-1)];
end
%STBC
data_stbc = func_stbc(data,Tr_matrix,NTr_matrix,NCarrier,Nt);
%添加训练序列
data_stbc = [Tx_training;data_stbc];
data_rec = zeros(1,Nadder*(NTr_matrix+1),Nr);
for st11=1:Nr
for st2=1:Nt
...........................................................................
%解调
if Modes == 2 | Modes == 4
r_sym = pskdemod(data_recf,Modes,0);
end
if Modes == 16 | Modes == 64
r_sym = qamdemod(data_recf,Modes,0);
end
data_buffer1(:,st1:st1+Nt-1,st11) = r_sym;
end
end
data_bufferf = zeros(Nbase,Nr);
for st11=1:Nr
tmps1 = data_buffer1(:,:,st11);
data_bufferf(:,st11) = tmps1(:);
data_bits(:,:,st11) = de2bi(data_bufferf(:,st11));
if isldpc == 1;
Recfind = [];
%LDPC译码
for ix = 1:Nbits
[vhatsd,nb_itersd,successsd] = func_Dec(2*data_bits(:,ix,st11)-1,HS{ix},N0,30);
Recfind(:,ix) = vhatsd(Ml+1:Nl)';
end
end
if isldpc == 0;
Recfind = [];
Recfind(:,:) = data_bits(:,:,st11);
end
for st22=1:Nbase/2
for st33=1:Nbits
if Recfind(st22,st33)~=Tsignal0(st22,st33)
Nerror(st11) = Nerror(st11) + 1;
end
end
end
end
error = error + mean(Nerror);
IMAGE2(:,2*CNT-1:2*CNT) = Recfind;
end
Bers(j_snr)=error/(Nbase)/CNT/Nbits;
end
%还原图像
subplot(122);
imshow(IMAGE2);
title('接收到的图像');
% figure;
% semilogy(SNRs,Bers,'b-s');
% xlabel('信噪比/dB');
% ylabel('误码率');
% grid on
if SNRs == 2
save r1_2.mat IMAGE IMAGE2
end
if SNRs == 5
save r1_5.mat IMAGE IMAGE2
end
if SNRs == 10
save r1_10.mat IMAGE IMAGE2
end
14_028_m
4.完整算法代码文件
V