题目描述
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树。
知识点:平衡二叉树的左右子树深度最多相差1;前面几层满秩。 参考书中解法!
思路1:遍历树的每个节点时,调用TreeNodeDepth函数得到它的左、右子树的深度。缺点:至上而下,判断上层节点时,会重复遍历下层节点
class Solution {
public:
bool IsBalanced_Solution(TreeNode* pRoot) {
if (pRoot == nullptr)
return true;
int left = TreeNodeDepth(pRoot->left);
int right = TreeNodeDepth(pRoot->right);
if (abs(left - right) > 1)
return false;
return IsBalanced_Solution(pRoot->left) && IsBalanced_Solution(pRoot->right);
}
int TreeNodeDepth(TreeNode* pRoot) {
if (pRoot == nullptr)
return true;
int left = TreeNodeDepth(pRoot->left);
int right = TreeNodeDepth(pRoot->right);
return (left > right ? left : right) + 1;
}
};
思路2:至下而上,若子树是平衡二叉树,就返回子树的高度;若子树不是平衡二叉树,就直接停止遍历;这样做至多只对每个结点访问一次。
class Solution {
public:
bool IsBalanced_Solution(TreeNode* pRoot) {
return TreeNodeDepth(pRoot) != -1;
}
int TreeNodeDepth(TreeNode* pRoot) {
if (pRoot == nullptr)
return true;
int left = TreeNodeDepth(pRoot->left);
if (left == -1) return -1;
int right = TreeNodeDepth(pRoot->right);
if (right == -1) return -1;
if (abs(left - right) > 1)
return -1;
return (left > right ? left : right) + 1;
}
};