剑指offer 55-2-平衡二叉树 C++

16 篇文章 0 订阅

题目描述
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树。

知识点:平衡二叉树的左右子树深度最多相差1;前面几层满秩。 参考书中解法!

思路1:遍历树的每个节点时,调用TreeNodeDepth函数得到它的左、右子树的深度。缺点:至上而下,判断上层节点时,会重复遍历下层节点

class Solution {
public:
	bool IsBalanced_Solution(TreeNode* pRoot) {
		if (pRoot == nullptr)
			return true;
		int left = TreeNodeDepth(pRoot->left);
		int right = TreeNodeDepth(pRoot->right);
		if (abs(left - right) > 1)
			return false;
		return IsBalanced_Solution(pRoot->left) && IsBalanced_Solution(pRoot->right);
	}
	int TreeNodeDepth(TreeNode* pRoot) {
		if (pRoot == nullptr)
			return true;
		int left = TreeNodeDepth(pRoot->left);
		int right = TreeNodeDepth(pRoot->right);
		return (left > right ? left : right) + 1;
	}
};

思路2:至下而上,若子树是平衡二叉树,就返回子树的高度;若子树不是平衡二叉树,就直接停止遍历;这样做至多只对每个结点访问一次。

class Solution {
public:
	bool IsBalanced_Solution(TreeNode* pRoot) {
		return TreeNodeDepth(pRoot) != -1;
	}
	int TreeNodeDepth(TreeNode* pRoot) {
		if (pRoot == nullptr)
			return true;
		int left = TreeNodeDepth(pRoot->left);
		if (left == -1) return -1;
		int right = TreeNodeDepth(pRoot->right);
		if (right == -1) return -1;
		if (abs(left - right) > 1)
			return -1;
		return (left > right ? left : right) + 1;
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值