统计学习方法笔记(一):感知机

本文介绍了感知机模型,包括输入输出空间的关系、线性方程的几何解释,以及学习过程中使用梯度下降法求解权重和偏置的过程,重点讲解了损失函数的定义和优化策略。
摘要由CSDN通过智能技术生成

统计学习方法笔记(一):感知机

0.补充知识

i.超平面

定义:在几何中,超平面指的是比所处空间少一个维度的子空间。

简单解释:0维的点可以把1维的线分成两部分,1维的线可以把2维的面分成两部分,2维的面可以把3维的体分成两部分,n-1维的子空间可以把n维空间分成两部分,超平面就是这个n-1维子空间,它就像3维空间中的平面,可以用来分割n维空间

ii.范数

一种表示距离的属性,设n维向量X = (x1, x2, x3, …, xn),则其范数表示一般为
∣ ∣ X ∣ ∣ ||X|| ∣∣X∣∣
范数的类型有很多,下面介绍常见的几种

1)lp范数
∣ ∣ x ∣ ∣ p = ∑ i ∣ x i ∣ p p ||x||_p=\sqrt[p]{\sum_i|x_i|^p} ∣∣xp=pixip
2)l0范数

p=0时的lp范数,表示向量x中非零元素的个数,即
∣ ∣ x ∣ ∣ 0 = # ( i ∣ x i ≠ 0 ) ||x||_0=\#(i|x_i\neq 0) ∣∣x0=#(ixi=0)
3)l1范数

p=1时的lp范数,表示向量x中所有元素绝对值之和
∣ ∣ x ∣ ∣ 1 = ∑ i ∣ x i ∣ ||x||_1=\sum_{i}|x_i| ∣∣x1=ixi
4)l2范数

p=2时的lp范数,为向量所有元素值平方和的开平方,表示向量x在欧氏空间中终点到原点的距离
∣ ∣ x ∣ ∣ 2 = ∑ i x i 2 ||x||_2=\sqrt{\sum_i {x_i^2}} ∣∣x2=ixi2

1.感知机模型

i.输入空间与输出空间的关系

f ( x ) = s i g n ( w ⋅ x + b ) f(x) = sign(w\cdot x+b) f(x)=sign(wx+b)

参数解释

输入空间x,权值(或权值向量)w:满足关系
x , w ⊆ R n x,w \subseteq R^n x,wRn
输出空间f(x):满足关系
y = f ( x ) , y = { + 1 , − 1 } y=f(x),y = \{ +1,-1\} y=f(x),y={+1,1}
偏置b:满足关系
b ∈ R b \in R bR
符号函数sign:
s i g n ( x ) = { + 1 , x ≥ 0 − 1 , x < 0 sign(x)=\begin{cases} +1,&x\geq0 \\ -1,&x <0 \end{cases} sign(x)={+1,1,x0x<0
线性方程的几何解释

线性方程
w ⋅ x + b w \cdot x +b wx+b

对应于特征空间R^n中的一个超平面 S ,其中 w 是超平面的法向量, b 是超平面的截距.这个超平面将特征空间划分为两个部分.位于两部分的点(特征向量)分别被分为正、负两类.因此,超平面 S 称为分离超平面(separating hyperplane)

ii.学习过程简述

由训练数据集(实例的特征向量及类别)
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , . . . , ( x N , y N ) } T = \{(x_1,y_1),(x_2,y_2),(x_3,y_3),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)}
其中
x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , . . . , N x_i \in X=R^n,y_i \in Y=\{+1,-1\},i=1,2,...,N xiX=Rn,yiY={+1,1},i=1,2,...,N

求得感知机模型,即求得模型参数 w , b 。感知机预测,通过学习得到的感知机模型,对于新的输入实例给出其对应的输出类别

2.损失函数

L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w,b)=-\sum_{x_i\in M}{y_i(w\cdot x_i+b)} L(w,b)=xiMyi(wxi+b)

参数解释

M:误分类点的集合

xi,yi:给定数据集的输入和输出
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , . . . , ( x N , y N ) } T = \{(x_1,y_1),(x_2,y_2),(x_3,y_3),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)}
其中
x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , . . . , N x_i \in X=R^n,y_i \in Y=\{+1,-1\},i=1,2,...,N xiX=Rn,yiY={+1,1},i=1,2,...,N

3.具体学习过程

**i.思路:**使用梯度下降法

1)求w,b的偏导,得到梯度的分量
∂ L ( w , b ) ∂ w = − ∑ x i ∈ M y i x i ∂ L ( w , b ) ∂ b = − ∑ x i ∈ M y i \frac{\partial{{L(w,b)}}}{\partial w}=-\sum_{x_i \in M}y_ix_i \\ \frac{\partial{{L(w,b)}}}{\partial b}=-\sum_{x_i \in M}y_i wL(w,b)=xiMyixibL(w,b)=xiMyi
2)通过随机选取误分类点(xi, yi)更新w,b的值
w ← w + η y i x i b ← b + η y i ( 0 < η ≤ 1 ) w \leftarrow w+\eta y_ix_i \\ b \leftarrow b+\eta y_i\\ (0<\eta \leq 1) ww+ηyixibb+ηyi(0<η1)
3)通过不断迭代w和b的值使得损失函数值为最小

ii.算法:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hunnybub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值