读书笔记:Poisson过程之事件发生时刻的条件分布

假设到时刻 t t t,Poisson 过程描述的事件 A A A 已经发生了 n n n 次,我们现在来考虑这 n n n 次事件发生的时刻 T 1 , T 2 , ⋯   , T n T_1,T_2,\cdots,T_n T1,T2,,Tn 的联合分布。

在这里插入图片描述

∙ \bullet 首先,简化这个问题,考虑 n = 1 n=1 n=1 时的情况,对于 s ≤ t s \leq t st,有
P { T 1 ≤ s ∣ N ( t ) = 1 } = P { T 1 ≤ s , N ( t ) = 1 } P { N ( t ) = 1 } \displaystyle P\{T_1 \leq s|N(t)=1\}=\frac {P\{T_1 \leq s,N(t)=1\}}{P\{N(t)=1\}} P{T1sN(t)=1}=P{N(t)=1}P{T1s,N(t)=1}

= P { A 发 生 在 s 时 刻 之 前 , ( s , t ] 内 A 没 有 发 生 } P { N ( t ) = 1 } \displaystyle =\frac {P\{A发生在s时刻之前,(s,t]内A没有发生\}}{P\{N(t)=1\}} =P{N(t)=1}P{As,(s,t]A}

= P { N ( s ) = 1 } ⋅ P { N ( t ) − N ( s ) = 0 } P { N ( t ) = 1 } \displaystyle =\frac {P\{N(s)=1\} \cdot P\{N(t)-N(s)=0\}}{P\{N(t)=1\}} =P{N(t)=1}P{N(s)=1}P{N(t)N(s)=0}

= λ s e − λ s ⋅ e − λ ( t − s ) λ t e − λ t = s t \displaystyle=\frac {\lambda s e^{-\lambda s} \cdot e^{-\lambda (t-s)}}{\lambda t e^{-\lambda t}}=\frac {s}{t} =λteλtλseλseλ(ts)=ts

∙ \bullet 现在考虑 n ≥ 2 n \geq 2 n2 的情况
0 < t 1 < t 2 < ⋯ < t n < t n + 1 = t 0 \lt t_1 \lt t_2 \lt \cdots \lt t_n \lt t_{n+1}=t 0<t1<t2<<tn<tn+1=t 。取 h i h_i hi 充分小使得 t i + h i < t i + 1 ( i = 1 , 2 , ⋯   , n ) t_i+h_i \lt t_{i+1} \quad (i=1,2,\cdots ,n) ti+hi<ti+1(i=1,2,,n),则
P { t i < T i ≤ t i + h , i = 1 , 2 , ⋯   , n ∣ N ( t ) = 1 } \displaystyle P\{t_i \lt T_i \leq t_i+h,i=1,2,\cdots,n|N(t)=1\} P{ti<Titi+h,i=1,2,,nN(t)=1}
= P { 在 [ t i , t i + h i ] 中 恰 有 一 个 事 件 , i = 1 , 2 , ⋯   , n , 而 在 [ 0 , t ] 的 其 他 地 方 没 有 事 件 } P { N ( t ) = 1 } \displaystyle =\frac {P\{在[t_i,t_i+h_i]中恰有一个事件,i=1,2,\cdots,n,而在[0,t]的其他地方没有事件\}}{P\{N(t)=1\}} =P{N(t)=1}P{[ti,ti+hi],i=1,2,,n,[0,t]}

= λ h 1 e − λ h 1 ⋯ λ h n e − λ h n e − λ ( t − h 1 − h 2 − ⋯ − h n ) e − λ t ( λ t ) n / n ! \displaystyle=\frac {\lambda h_1 e^{-\lambda h_1} \cdots \lambda h_n e^{-\lambda h_n}e^{-\lambda(t-h_1-h_2-\cdots-h_n)}}{e^{-\lambda t} (\lambda t)^n/n!} =eλt(λt)n/n!λh1eλh1λhneλhneλ(th1h2hn)
= n ! t n h 1 h 2 ⋯ h n \displaystyle=\frac {n!}{t^n} h_1 h_2 \cdots h_n =tnn!h1h2hn

则在给定 N ( t ) = n N(t)=n N(t)=n 时, T 1 , T 2 , ⋯   , T n T_1,T_2,\cdots,T_n T1,T2,,Tn n n n 维条件分布密度为:

f ( t 1 , t 2 , ⋯   , t n ) = lim ⁡ h i → 0 1 ≤ i ≤ n P { t i < T i ≤ t i + h , i = 1 , 2 , ⋯   , n ∣ N ( t ) = n } h 1 h 2 ⋯ h n \displaystyle f(t_1,t_2,\cdots,t_n)=\lim \limits_{h_i \rightarrow 0 \atop 1\leq i \leq n} \frac {P\{t_i \lt T_i \leq t_i+h,i=1,2,\cdots,n|N(t)=n\}}{h_1 h_2 \cdots h_n} f(t1,t2,,tn)=1inhi0limh1h2hnP{ti<Titi+h,i=1,2,,nN(t)=n}
= n ! t n , 0 < t 1 < t 2 < ⋯ < t n \displaystyle =\frac{n!}{t^n},\quad 0 \lt t_1 \lt t_2 \lt \cdots \lt t_n =tnn!,0<t1<t2<<tn



【本文的LaTeX代码】

假设到时刻 $t$,Poisson 过程描述的事件 $A$ 已经发生了 $n$ 次,我们现在来考虑这 $n$ 次事件发生的时刻 $T_1,T_2,\cdots,T_n$ 的联合分布。

$\bullet$ 首先,简化这个问题,考虑 $n=1$ 时的情况,对于 $s \leq t$,有
$\displaystyle P\{T_1 \leq s|N(t)=1\}=\frac {P\{T_1 \leq s,N(t)=1\}}{P\{N(t)=1\}}$

$\displaystyle =\frac {P\{A发生在s时刻之前,(s,t]内A没有发生\}}{P\{N(t)=1\}}$

$\displaystyle =\frac {P\{N(s)=1\} \cdot P\{N(t)-N(s)=0\}}{P\{N(t)=1\}}$

$\displaystyle=\frac {\lambda s e^{-\lambda s} \cdot e^{-\lambda (t-s)}}{\lambda t e^{-\lambda t}}=\frac {s}{t}$

$\bullet$ 现在考虑 $n \geq 2$ 的情况
设 $0 \lt t_1 \lt t_2 \lt \cdots \lt t_n \lt t_{n+1}=t$ 。取 $h_i$ 充分小使得 $t_i+h_i \lt t_{i+1} \quad (i=1,2,\cdots ,n)$,则
$\displaystyle P\{t_i \lt T_i \leq t_i+h,i=1,2,\cdots,n|N(t)=1\}$
$\displaystyle =\frac {P\{[t_i,t_i+h_i]中恰有一个事件,i=1,2,\cdots,n,而在[0,t]的其他地方没有事件\}}{P\{N(t)=1\}}$

$\displaystyle=\frac {\lambda h_1 e^{-\lambda h_1} \cdots \lambda h_n e^{-\lambda h_n}e^{-\lambda(t-h_1-h_2-\cdots-h_n)}}{e^{-\lambda t} (\lambda t)^n/n!}$
$\displaystyle=\frac {n!}{t^n} h_1 h_2 \cdots h_n$

则在给定 $N(t)=n$ 时,$T_1,T_2,\cdots,T_n$ 的 $n$ 维条件分布密度为:

$\displaystyle f(t_1,t_2,\cdots,t_n)=\lim \limits_{h_i \rightarrow 0 \atop 1\leq i \leq n} \frac {P\{t_i \lt T_i \leq t_i+h,i=1,2,\cdots,n|N(t)=n\}}{h_1 h_2 \cdots h_n}$
$\displaystyle =\frac{n!}{t^n},\quad 0 \lt t_1 \lt t_2 \lt \cdots \lt t_n$ 

\
\
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值