随机过程总结(4)--泊松过程

泊松过程因为状态离散,因而不再用相关函数来进行刻画,转而用概率进行刻画。其严格定义此处不赘述,很容易查到,概括如下

泊松过程的条件

对于一个记数过程N(t),满足下面四个条件时称之为泊松过程

  1. N(0)=0
  2. N(t)为独立增量过程
  3. N(t)为平稳增量过程
  4. N(t)有稀疏性,即在一个充分小的时间段 Δ t \Delta t Δt内,不可能记数两次
  • 对一个二项分布,它有参数n和参数p,当p很小而n很大时,二项分布会变成泊松分布。泊松分布的刻画是: 等待一个稀有事件的发生。从而对于泊松过程来说,"跳动"就是一个稀有事件的发生

  • 泊松过程的四个条件中,后三个条件其实很严格。如果放松这些条件,会得到一些推广的泊松过程,认识这些过程有助于理解泊松过程

  • 因为泊松过程是初值给定的独立增量过程,因而也是Markov过程

P { N ( s + t ) − N ( s ) = k } = P { N ( t ) = k } = ( λ t ) k k ! e − λ t , k = 0 , 1 , 2 , ⋯ P\{N(s+t)-N(s)=k\}=P\{N(t)=k\}=\frac{(\lambda t)^{k}}{k !} e^{-\lambda t}, k=0,1,2, \cdots P{N(s+t)N(s)=k}=P{N(t)=k}=k!(λt)keλt,k=0,1,2,
E { N ( t ) } = λ t E\{N(t)\}=\lambda t E{N(t)}=λt

研究泊松过程一定要利用好其独立增量性,例如上述等式中的第一个等号

泊松过程的拓广

  1. 放松平稳性。现在来看没有平稳性的泊松过程:

什么叫平稳性?直观来看,就是稀有事件(跳跃)的发生概率保持不变,“事件的发生强度不变”,这就是平稳性。

如果泊松过程的"强度"在发生变化,即参数 λ \lambda λ是时变的 λ ( t ) \lambda (t) λ(t),就称之为非齐次平稳过程

  1. 如果对泊松过程的稀疏性进行放松,即要求一个 ϵ \epsilon ϵ 时间内,发生事件的次数为1次或多次,就会得到复合泊松过程
  2. 对于独立增量性的放松会导致泊松过程变化很大,有几种不同的变化方式
  • 让泊松过程的强度 λ \lambda λ 为一个随机变量,得到随即参数泊松过程
  • 让泊松过程的强度在事件发生前后产生一种随事件变化的影响,这个拓广可以用泊松过程通过LTI系统来描述,得到过滤的泊松过程

泊松过程与指数过程

泊松过程跳跃的间隔长度服从指数分布

  • { S n } \left\{S_{n}\right\} {Sn} 是第 n \mathrm{n} n 个事件发生的时刻
  • { X ( n ) = S n − S n − 1 } \left\{X(n)=S_{n}-S_{n-1}\right\} {X(n)=SnSn1} 表示第n-1个事件和第n个事件发生的时间间隔,也就是第 n − 1 \mathrm{n}-1 n1 个事件的寿 命。
  • { N ( t ) } \{N(t)\} {N(t)} 是强度为 λ \lambda λ 的时齐poisson过程 ⟺ { X ( n ) } \Longleftrightarrow\{X(n)\} {X(n)} 是独立且参数同为 λ \lambda λ 的指数分布。
    P { N ( t ) = k } = ( λ t ) k k ! e − λ t , k = 0 , 1 , 2 , ⋯ P\{N(t)=k\}=\frac{(\lambda t)^{k}}{k !} e^{-\lambda t}, k=0,1,2, \cdots P{N(t)=k}=k!(λt)keλt,k=0,1,2,
    P { X ( n ) ≤ x } = 1 − e − λ x , x ≥ 0 P\{X(n) \leq x\}=1-e^{-\lambda x}, x \geq 0 P{X(n)x}=1eλx,x0
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值