Poisson过程
基本概念
- 初值给定的独立增量过程是马氏过程。
- poisson过程是一计数过程,增量平稳且独立,增量满足参数为 λ t \lambda t λt的poisson分布。即
P { N ( s + t ) − N ( s ) = k } = P { N ( t ) = k } = ( λ t ) k k ! e − λ t , k = 0 , 1 , 2 , ⋯ P\{N(s+t)-N(s)=k\}=P\{N(t)=k\}=\frac{(\lambda t)^{k}}{k!}e^{-\lambda t},k=0,1,2,\cdots P{N(s+t)−N(s)=k}=P{N(t)=k}=k!(λt)ke−λt,k=0,1,2,⋯
E { N ( t ) } = λ t E\{N(t)\}=\lambda t E{N(t)}=λt
注意:研究poisson过程的时候一定要利用它增量独立的性质,尤其是算均值和相关的时候,把大一点的时间拆开。
poisson过程和指数分布的关系
- { N ( t ) } \{N(t)\} {N(t)}是计数过程
- { S n } \{S_n\} {Sn}是第n个事件发生的时刻
- { X ( n ) = S n − S n − 1 } \{X(n)=S_n-S_{n-1}\} {X(n)=Sn−Sn−1}表示第n-1个事件和第n个事件发生的时间间隔,也就是第n-1个事件的寿命。
- { N ( t ) } \{N(t)\} {N(t)}是强度为 λ \lambda λ的时齐poisson过程 ⟺ { X ( n ) } \Longleftrightarrow\{X(n)\} ⟺{X(n)}是独立且参数同为 λ \lambda λ的指数分布。
P { N ( t ) = k } = ( λ t ) k k ! e − λ t , k = 0 , 1 , 2 , ⋯ P\{N(t)=k\}=\frac{(\lambda t)^{k}}{k!}e^{-\lambda t},k=0,1,2,\cdots P{N(t)=k}=k!(λt)ke−λt,k=0,1,2,⋯
P { X ( n ) ≤ x } = 1 − e − λ x , x ≥ 0 P\{X(n)\leq x\}=1-e^{-\lambda x},x\geq 0 P{X(n)≤x}=1−e−λx,x≥0
剩余寿命和年龄
- S N ( t ) S_{N(t)} SN(t)表示在 t t t时刻前最后一个事件发生的时刻, S N ( t ) + 1 S_{N(t)+1} SN(t)+1表示在 t t t时刻后首次事件发生的时刻。年龄是指: V ( t ) = t − S N ( t ) V(t)=t-S_{N(t)} V(t)=t−SN(t),剩余寿命是指: W ( t ) = S N ( t ) + 1 − t W(t)=S_{N(t)+1}-t W(t)=SN(t)+1−t。
-
{
N
(
t
)
}
\{N(t)\}
{N(t)}是强度为
λ
\lambda
λ的时齐poisson过程
⟹
\Longrightarrow
⟹
- W ( t ) W(t) W(t)和 { X n } \{X_n\} {Xn}同分布
- V ( t ) V(t) V(t)是截尾的指数分布
P { W ( t ) ≤ x } = { 1 − e − λ x 1 − e − λ t , 0 ≤ x < t 1 , t ≤ x P\{W(t)\leq x\}=\left\{\begin{array}{ll}\frac{1-e^{-\lambda x}}{1-e^{-\lambda t}}&,0\leq x< t\\1&,t\leq x\end{array}\right. P{W(t)≤x}={1−e−λt1−e−λx1,0≤x<t,t≤x
到达时间的分布
齐次poisson过程,
N
(
t
)
=
n
N(t)=n
N(t)=n时,
{
S
n
}
\{S_n\}
{Sn}的条件分布和n个在
[
0
,
t
]
[0,t]
[0,t]上相互独立同均匀分布的顺序统计量的分布函数一样。
f
(
t
1
,
t
2
,
⋯
,
t
n
)
=
{
n
!
t
n
,
0
<
t
1
<
t
2
<
⋯
<
t
n
≤
t
0
,
e
l
s
e
f(t_1,t_2,\cdots,t_n)=\left\{\begin{array}{ll}\frac{n!}{t^n}&,0<t_1<t_2<\cdots<t_n\leq t\\0&,else\end{array}\right.
f(t1,t2,⋯,tn)={tnn!0,0<t1<t2<⋯<tn≤t,else
- 在 N ( t ) = 1 N(t)=1 N(t)=1时, S 1 S_1 S1是 [ 0 , t ] [0,t] [0,t]上的均匀分布( X 1 X_1 X1也是) ⟹ \Longrightarrow ⟹poisson过程
例题
基本计算
判断是否是poisson过程:状态空间是非负整数。
判断是否平稳:计算均值(常数)和自相关函数(只与时间差有关)。
计算均值函数和相关函数:代到均值里化简,独立的就拆开,然后利用条件概率和全概率公式计算。
复合poisson过程:固定一个(把一个变为条件),然后一层一层算。要注意,个数服从poisson过程,时间间隔就服从指数分布。
计算 p ( S n = t ) p(S_n=t) p(Sn=t):取两个时间 t − h , t t-h,t t−h,t,则有 N ( t − h ) = n − 1 , N ( h ) = 1 N(t-h)=n-1,N(h)=1 N(t−h)=n−1,N(h)=1,计算概率然后令h趋于0。计算多次发生时间点的联合分布也是这样做,记得除以 h n h^n hn。
计算 P ( N ( t ) = n ) P(N(t)=n) P(N(t)=n):利用 N ( t ) , S n N(t),S_n N(t),Sn的关系。 { N ( t ) = n } = { S n < t } − { S n + 1 < t } \{N(t)=n\}=\{S_n<t\}-\{S_{n+1}<t\} {N(t)=n}={Sn<t}−{Sn+1<t}
[ 0 , t ] [0,t] [0,t]内顾客等待总时间、敲击损失
先算 N ( t ) = n N(t)=n N(t)=n时的条件均值( { S k } \{S_k\} {Sk}均匀分布),再对 n = 1 , 2 , ⋯ , ∞ n=1,2,\cdots,\infty n=1,2,⋯,∞求均值。
更新过程
过滤的poisson过程
定义
[
0
,
T
]
[0,T]
[0,T]内有一串个数服从poisson分布的冲激脉冲串,经过线性时不变系统,滤波器输出是一随机过程:
ξ
(
t
)
=
Σ
i
=
1
N
(
T
)
h
(
t
−
S
i
)
\xi(t)=\Sigma_{i=1}^{N(T)}h(t-S_i)
ξ(t)=Σi=1N(T)h(t−Si)
称作过滤的poisson过程。
基本假设
- 脉冲持续时间很短
- 因果性,即: t < S i t<S_i t<Si时, h ( t − S i ) = 0 h(t-S_i)=0 h(t−Si)=0
统计特性
E { ξ ( t ) } = λ ∫ 0 T h ( y ) d y = λ α E\{\xi(t)\}=\lambda\int_0^Th(y)dy=\lambda \alpha E{ξ(t)}=λ∫0Th(y)dy=λα
C ξ ξ ( τ ) = λ ∫ 0 T h ( y ) h ( y + τ ) d y C_{\xi\xi}(\tau)=\lambda\int_0^Th(y)h(y+\tau)dy Cξξ(τ)=λ∫0Th(y)h(y+τ)dy
D { ξ ( t ) } = λ ∫ 0 T [ h ( y ) ] 2 d y = λ β 2 D\{\xi(t)\}=\lambda\int_0^T[h(y)]^2dy=\lambda \beta^2 D{ξ(t)}=λ∫0T[h(y)]2dy=λβ2
特征函数
Φ ξ ( t ) ( v ) = E { e j v ξ ( t ) } = exp { λ ∫ 0 T [ exp ( j v h ( y ) ) − 1 ] d y } \Phi_{\xi(t)}(v)=E\{e^{jv\xi(t)}\}=\exp\{\lambda\int_0^T[\exp(jvh(y))-1]dy\} Φξ(t)(v)=E{ejvξ(t)}=exp{λ∫0T[exp(jvh(y))−1]dy}
这个式子说明, ξ ( t ) \xi(t) ξ(t)的特征函数与 t t t无关, ξ ( t ) \xi(t) ξ(t)是严平稳过程。
将 ξ ( t ) \xi(t) ξ(t)进行标准化: η ( t ) = ξ ( t ) − λ α λ β \eta(t)=\frac{\xi(t)-\lambda \alpha}{\sqrt{\lambda}\beta} η(t)=λβξ(t)−λα
令 λ → ∞ \lambda\rightarrow\infty λ→∞可以得到:
lim Φ η ( t ) ( v ) = e − v 2 2 \lim\Phi_{\eta(t)}(v)=e^{-\frac{v^2}{2}} limΦη(t)(v)=e−2v2
由特征函数与分布函数唯一确定性,我们知道当 λ → ∞ \lambda\rightarrow\infty λ→∞ 时, η ( t ) \eta(t) η(t)是服从标准正态分布的随机变量。因此可知 ξ ( t ) \xi(t) ξ(t)也是服从正态分布的随机变量。即单位时间内出现的平均脉冲数无限增大时, ξ ( t ) \xi(t) ξ(t)的极限分布是正态分布,这符合中心极限定理。