关于SVPWM马鞍形和相、线电压波形的一些汇总

这个问题困惑过不少初学者或者没有相关项目经验的人,当初我也被困惑过,我来做个总结:

SVPWM调制的结果,是各相电压(端电压对中性点,line-neutral)是正弦的,如果是PWM控制,这个正弦电压是很难观察到的,因为示波器的探头只能夹在电机的三个出线上(端电压测量口),就算你把虚拟中点引起来,你看到的电压波形也是PWM信号, PWM dutycycle*Udc =正弦。那怎么确认相电压是正弦的呢?看各相电流,如果示波器上看到的电流是正弦的,反过来可以确认等效的相电压是正弦的I = U/Z,感抗Z的存在不影响波形。

那么马鞍型电压波形是怎么回事?它是电机的三个出线端对地的波形(line-GND),也是等效的均值,PWM DUTY CYCLE *Udc,直接把示波器探头测端电压,看到的也是PWM波,不是马鞍形,如果你想看这个马鞍形波形,可以把 端电压经过RC低通滤形,这样,示波器上就看到马鞍形的波形了。

一些厂商如Microchip的笔记上,对这个问题也犯个错误,或者标不清楚,我见过对这个问题说得最清楚的是是TI公司,所以对TI的严谨印象很深。

再说一句,SVPWM的相电压是正弦(不是马鞍形),SVPWM的相电压是正弦(不是马鞍形),SVPWM的端电压(line to GND)经过滤形后得到的滤形是马鞍形。

区分几个名词:

端电压 terminal voltage, terminal to GND(line to GND)

相电压 phase voltage, terminal to neutral point(line to neutral point)

相电流(绿色)一定是正弦,由此可知等效的相电压是正弦,I =U/Z,感抗Z不影响波形;

端电压(黄色)一定是你用示波器一端钳住电机的某一相(MOSFET上下桥引出的某一相),然后示波器的地接板子上的地,并且经过滤波,才看到马鞍形波形。

电压,顾名思义,是两点之间的电位差,某点的电压,准确地说,是某点相对另一点的电位差,只是在通常情况下,另一点通常选为零电位点。

电流就没有参考点的概念,电流指的是导线中的电流,怎么测量都是一样的。

通过接地电阻测量相电流,理解很简单,相电流从上端----》中点-----》地, 当然可以在中点和地之间加一个采样电阻来测量相电流,采得的电压包括有相电流的信息,这里要注意采样时机。

你也可以在上端---》中点之间安装电流传感器,这样也可以采到相电流,并且这里采到的相电流就是真实的相电流,很多方案就是这么做的。

单片机输出的信号经低通滤波器后可以得到马鞍形波形。

但是该输出信号经过驱动电路输入到电机后,由于3相的3次谐波电流在电机中自行抵消,因此看到的相电流波形是基波分量,也就是单一的正弦波电流。

基于SVPWM思想,可以衍生出无数种调制技术,对于理想三相电机,SVPWM的无数种调制方式中,有一种的效果与SPWM效果完全相同。然而,实际的SVPWM,在不影响控制效果的前提下,直流母线电压利用率有显著提升。受SVPWM的启示,某些SPWM变频器通过相电压注入三次谐波,也能达到类似的效果,当然,严格讲,这已经不是严格意义上的SPWM了。 SVPWM调制波呈马鞍形相比SPWM波形添加了0矢量,也即是整数倍3次谐波,也即是在正弦的基础上加了整数倍的3次谐波变成了马鞍形

根据三相电路对称性可知,相电压的三次谐波相位相同,相位相同的谐波就是零序谐波。

此外,9次谐波,15次谐波,所有三的整数倍的奇数次谐波,都是零序谐波。

A相;i=Isin3wt

B相;i=Isin3(w-120º)t=Isin3wt

C相;i=Isin3(w-240º)t=Isin3wt

故三项同相位

可知:当采用SVPWM控制时,由于波形通过正弦波和整数倍的3次谐波(零矢量)合成,因此UNO不为0,而是等于3次谐波电压,这样,端电压为马鞍形,相电压为标准正弦,线电压为标准正弦

马鞍波如下原理:

以上引用

总结:

        SVPWM下电机的相电压是正弦(不是马鞍形),

        SVPWM下电机的线电压是正弦(不是马鞍形),

        SVPWM下电机的端电压(line to GND)经过滤形后得到的滤形是马鞍形

        电机中心点对GND是3倍频的正弦波

镜像问题,三相整流N线电压与整流后GND之间的电压波形是什么?

                VA与GND电压波形是什么样的?

                下图原理图电压源是AC220V

        

仿真结构如下图,V(n002)A点与GND电压波形(蓝色)

引申问题,电机中点电压是正弦波,三相整流中点电压是馒头波,为什么不同?

————————————————

版权声明:部分引用下面链接

原文链接:关于SVPWM马鞍形和相、线电压标准正弦的一些汇总_捡蘑菇的小竹篓的博客-CSDN博客_svpwm调制波为啥是马鞍

<think>好的,用户之前问过“马鞍”,现在接着问“SVPWM马鞍波形成原因”,看来他可能在学习电机控制或者电力电子方面的知识。我需要先确认SVPWM是什么,以及其中的马鞍具体指的是什么。 首先,SVPWM是空间矢量脉宽调制,常用于电机驱动中的逆变器控制。用户提到的“马鞍”可能是指SVPWM调制过程中产生的三调制波形,看起来像马鞍形状。这种波形通常与传统的正弦脉宽调制(SPWM)不同,会有更复杂的形状。 接下来需要分析为什么在SVPWM中会产生这样的马鞍波形。可能的原因包括空间矢量的合成方式,以及如何通过不同的矢量组合时间分配来逼近圆形磁链轨迹。由于SVPWM采用了六个非零矢量两个零矢量,通过切换这些矢量来合成所需的电压矢量,这会导致调制不再是简单的正弦,而是在正弦的基础上叠加了三次谐或其他成分,从而形成中间凹陷、两侧凸起的马鞍形状。 另外,用户可能想知道这种波形的好处,比如提高直流电压利用率,降低谐失真等。需要将这些技术细节以易懂的方式解释清楚,同时联系实际应用,比如在电机控制中如何提升效率。 还要注意用户可能的背景,可能是学生或者刚入行的工程师,需要避免过于专业的术语,或者适当解释术语。同时,用户之前的问题得到的是可能的解释方向,现在具体到SVPWM,需要更针对性的回答,确保准确性实用性。 最后,需要总结形成原因,并强调SVPWM的优势,这样用户不仅知道原因,还能理解其重要性。可能还需要提到三次谐注入的方法,因为这也是形成马鞍的关键因素之一,并且是提高电压利用率的一种常见技术。</think>在电力电子电机控制领域,**SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)** 是一种常用的调制技术,其调制过程中产生的三调制(如三电压波形)常被称为**“马鞍”**,因其形状类似马鞍而得名。以下是其形成原因的详细解释: --- ### 1. **SVPWM的基本原理** SVPWM的核心是通过控制逆变器开关管的导通与关断,将直流电压转换为三交流电压,并尽可能逼近理想的正弦波形。其关键步骤如下: - **空间矢量分解**:将三电压矢量分解为6个非零矢量2个零矢量(对应逆变器的8种开关状态)。 - **矢量合成**:通过不同矢量的时间组合,合成目标电压矢量,使电机磁链轨迹接近圆形(减少谐转矩脉动)。 --- ### 2. **“马鞍”的成因** 马鞍的形成与SVPWM对三电压的调制方式密切关: #### **(1) 三次谐注入** - 传统正弦调制(SPWM)的直流电压利用率较低(理论最大为86.6%)。为提高利用率,SVPWM在调制中注入**三次谐**(零序分量),使得三电压波形不再是纯正弦,而是呈现“中间凹陷、两侧凸起”的马鞍形。 - **数学表达**: 三调制可表示为: \( U_{a}(t) = U_m \sin(\omega t) + \frac{1}{6}U_m \sin(3\omega t) \) \( U_{b}(t) = U_m \sin(\omega t - 120°) + \frac{1}{6}U_m \sin(3\omega t) \) \( U_{c}(t) = U_m \sin(\omega t + 120°) + \frac{1}{6}U_m \sin(3\omega t) \) 三次谐(\(\sin 3\omega t\))在三中同位,叠加后形成马鞍形调制。 #### **(2) 空间矢量的切换逻辑** - SVPWM通过快速切换空间矢量(如矢量序列 \( U_0 \rightarrow U_1 \rightarrow U_2 \rightarrow U_7 \rightarrow U_2 \rightarrow U_1 \rightarrow U_0 \))逼近目标电压。 - 这种切换逻辑导致三调制的电压幅值在周期内非线性变化,进一步强化了马鞍形特征。 --- ### 3. **马鞍的物理意义** - **提高直流电压利用率**:马鞍通过三次谐注入,使线电压峰值达到直流母线电压的100%(传统SPWM仅为86.6%),显著提升了逆变器输出能力。 - **优化谐特性**:马鞍的谐能量集中在高频区域(如开关频率附近),更易被电机电感滤,降低电机损耗噪声。 --- ### 4. **马鞍的实际波形示例** 下图展示了SVPWM调制的三电压波形马鞍)与正弦的对比: ``` Phase A: /¯¯¯¯\_/¯¯¯¯\_/¯¯¯¯\_ Phase B: _/¯¯¯¯\_/¯¯¯¯\_/¯¯¯¯ Phase C: ¯¯¯\_/¯¯¯¯\_/¯¯¯¯\_/ ``` - **特征**:每个周期内,波形中间区域凹陷(类似马鞍),两侧因三次谐叠加而凸起。 --- ### 5. **SVPWM的优势总结** | 特性 | SVPWM马鞍) | 传统SPWM(正弦) | |---------------------|-----------------|-------------------| | 直流电压利用率 | 100% | 86.6% | | 谐失真 | 更低(高频为主)| 更高(低次谐) | | 适用场景 | 电机驱动、新能源逆变器 | 简单变频器 | --- ### 总结 SVPWM中的**“马鞍”**本质上是因三次谐注入空间矢量切换逻辑形成的特殊调制波形。它不仅提高了逆变器的电压利用率,还优化了输出谐特性,成为现代高性能电机控制的核心技术之一。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值