机器学习系列(四)——规则化(Regularize)

机器学习中,我们一直期望学习到一个泛化能力(generalization)强的函数,只有泛化能力强的模型才能很好地适用于整个样本空间,才能在新的样本点上表现良好。但是训练集通常只是整个样本空间很小的一部分,在训练机器学习模型时,稍有不注意,就可能将训练集中样本的特性当作了全体样本的共性,以偏概全,而造成过拟合(overfitting)问题,如何避免过拟合,是训练机器学习模型时最亟待解决的绊脚石。
从问题的根源出发,解决过拟合无非两种途径:

  • 使训练集能够尽可能全面的描述整个样本空间。因此又存在两个解决方向。①减少特征维数,特征维数减少了,样本空间的大小也随之减少了,现有数据集对样本空间的描述也就提高了。②增加训练样本数量,试图直接提升对样本空间的描述能力。
  • 加入规则化项。

第一种方法的人力成本通常很大,所以在实际中,我们通常采用第二种方法提升模型的泛化能力。
注:规则化在有些文档中也称作正则化,在本文中都采用规则化描述。

规则化(Regularize)

首先回顾一下,在寻找模型最优参数时,我们通常对损失函数采用梯度下降(gradient descent)算法
w ∗ , b ∗ = a r g min ⁡ w , b ∑ i = 1 m ( y ( i ) − ( w T x ( i ) + b ) ) 2 ∂ L ∂ w = ∑ i = 1 m 2 ( y ( i ) − ( w T x ( i ) + b ) ) ( − x ( i ) ) ∂ L ∂ b = ∑ i = 1 m 2 ( y ( i ) − ( w T x ( i ) + b ) ) ( − 1 ) w^*,b^*=arg\min_{w,b}\sum_{i=1}^m(y^{(i)}-(w^Tx^{(i)}+b))^2\\ \frac{\partial L}{\partial w}=\sum_{i=1}^m2(y^{(i)}-(w^Tx^{(i)}+b))(-x^{(i)})\\ \frac{\partial L}{\partial b}=\sum_{i=1}^m2(y^{(i)}-(w^Tx^{(i)}+b))(-1) w,b=argw,bmini=1m(y(i)(wTx(i)+b))2wL=i=1m2(y(i)(wTx(i)+b))(x(i))bL=i=1m2(y(i)(wTx(i)+b))(1)

通过上述公式,我们将一步步走到损失函数的最低点(不考虑局部最小值和鞍点情况),这时的 w w w b b b就是我们要找的最优参数。
对于回归问题,我们还可以直接采用最小二乘法求得解析解。
L = 1 2 ( y − X w ^ ) T ( y − X w ^ ) w ^ = ( X T X ) − 1 X T y L=\frac{1}{2}(y-X\hat{w})^T(y-X\hat{w})\\ \hat{w}=(X^TX)^{-1}X^Ty L=21(yXw^)T(yXw^)w^=(XTX)1XTy

可以看到,当前我们的损失函数只考虑最小化训练误差,希望找到的最优函数能够尽可能的拟合训练数据。但是正如我们所了解的,训练集不能代表整个样本空间,所以训练误差也不能代表在测试误差,训练误差只是经验风险,我们不能过分依赖这个值。当我们的函数对训练集拟合特别好,训练误差特别小时,我们也就走进了一个极端——过拟合。
为了解决这个问题,研究人员提出了规则化(regularize)方法。通过给模型参数附加一些规则,也就是约束,防止模型过分拟合训练数据。规则化通过在原有损失函数的基础上加入规则化项实现。
此时,最优化的目标函数如下:
w ∗ = a r g min ⁡ w ∑ i L ( y ( i ) , f ( x ( i ) ; w ) ) + λ Ω ( w ) w^*=arg\min_w\sum_iL(y^{(i)},f(x^{(i)};w))+\lambda\Omega(w) w=argwminiL(y(i),f(x(i);w))+λΩ(w)

其中,第一项对应于模型在训练集上的误差,第二项对应于规则化项。为了使得该目标函数最小,我们既需要训练误差最小,也需要规则化项最小,因此需要在二者之间做到权衡。
那应该选择怎样的表达式作为规则化项呢?以下引用李航博士《统计学习方法》中的一些描述:


规则化是结构风险最小化策略的实现,是在经验风险最小化上加一个规则化项(regularizer)或罚项(penalty term)。规则化项一般是模型复杂度的单调递增函数,模型越复杂,规则化值就越大。比如,规则化项可以是模型参数向量的范数。
规则化符合奥卡姆剃刀(Occam’s razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,规则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。


所以通常我们采用L1-范数和L2-范数作为规则化项。

L1-范数

向量的L1-范数是向量的元素绝对值之和,即
∣ ∣ x ∣ ∣ 1 = ∑ i ∣ x i ∣ ||x||_1=\sum_i|x_i| x1=ixi

当采用L1-范数作为规则化项对参数进行约束时,我们的优化问题可以写成以下形式:
min ⁡ w 1 2 ( y − X w ) 2 s . t . ∣ ∣ w ∣ ∣ 1 ≤ C \min_w\frac{1}{2}(y-Xw)^2\\ s.t.\quad||w||_1\le C wmin21(yXw)2s.t.w1C

采用拉格朗日乘子法可以将约束条件合并到最优化函数中,即
min ⁡ w 1 2 ( y − X w ) 2 + λ ∣ ∣ w ∣ ∣ 1 \min_w\frac{1}{2}(y-Xw)^2+\lambda||w||_1 wmin21(yXw)2+λw1

其中 λ \lambda λ是于 C C C一一对应的常数,用来权衡误差项和规则化项, λ \lambda λ越大,约束越强。二维情况下分别将损失函数的等高线图和L1-范数规则化约束画在同一个坐标轴下,
在这里插入图片描述

L1-范数约束对应于平面上一个正方形norm ball。等高线与norm ball首次相交的地方就是最优解。可以看到,L1-ball在和每个坐标轴相交的地方都有“角”出现,大部分时候等高线都会与norm ball在角的地方相交。这样部分参数值被置为0,相当于该参数对应的特征将不再发挥作用,实现了特征选择,增加了模型的可解释性。关于L1-范数规则化,可以解释如下:训练出来的参数代表权重,反应了特征的重要程度,比如 y = 20 x 1 + 5 x 2 + 3 y=20x_1+5x_2+3 y=20x1+5x2+3中,特征 x 1 x_1 x1明显比 x 2 x_2 x2更加重要,因为 x 1 x_1 x1的变动相较于 x 2 x_2 x2的变动,会给 y y y带来更大的变化。在人工选取的特征中,往往会存在一些冗余特征或者无用特征,L1-范数规则化将这些特征的权重置为0,实现了特征选择,同时也简化了模型。
L1-范数在x=0处存在拐点,所以不能直接求得解析解,需要用次梯度方法处理不可导的凸函数。

L2-范数

除了L1-范数,还有一种广泛使用的规则化范数:L2-范数。向量的L2-范数是向量的模长,即
∣ ∣ x ∣ ∣ 2 = ∑ i x i 2 ||x||_2=\sqrt{\sum_ix_i^2} x2=ixi2

当采用L2-范数作为规则化项对参数进行约束时,我们的优化问题可以写成以下形式:
min ⁡ w 1 2 ( y − X w ) 2 s . t . ∣ ∣ w ∣ ∣ 2 ≤ C \min_w\frac{1}{2}(y-Xw)^2\\ s.t.\quad||w||_2\le C wmin21(yXw)2s.t.w2C

同样可以将约束条件合并到最优化函数中,得到如下函数
min ⁡ w 1 2 ( y − X w ) 2 + λ ∣ ∣ w ∣ ∣ 2 \min_w\frac{1}{2}(y-Xw)^2+\lambda||w||_2 wmin21(yXw)2+λw2

也将损失函数的等高线图和L2-范数规则化约束画在同一个坐标轴下,
在这里插入图片描述

L2-范数约束对应于平面上一个圆形norm ball。等高线与norm ball首次相交的地方就是最优解。与L1-范数不同,L2-范数使得每一个 w w w都很小,都接近于0,但不会等于0,L2-范数规则化仍然试图使用每一维特征。对于L2-范数规则化可以解释如下:L2-范数规则化项将参数限制在一个较小的范围,参数越小,曲面越光滑,因而不会出现在很小区间内,弯曲度很大的情况,当 x x x一个较大的变化时, y y y也只会变化一点点,模型因此更加稳定,也就是更加generalization。
加入L2-范数规则化项后,目标函数扩展为如下形式:
w ∗ , b ∗ = a r g min ⁡ w , b ∑ i = 1 m ( y ( i ) − ( w T x ( i ) + b ) ) 2 + λ ∑ j = 1 n w j 2 ∂ L ∂ w = ∑ i = 1 m 2 [ ( y ( i ) − ( w T x ( i ) + b ) ) ( − x ( i ) ) + λ w ] ∂ L ∂ b = ∑ i = 1 m 2 [ ( y ( i ) − ( w T x ( i ) + b ) ) ( − 1 ) λ w ] w^*,b^*=arg\min_{w,b}\sum_{i=1}^m(y^{(i)}-(w^Tx^{(i)}+b))^2+\lambda\sum_{j=1}^nw_j^2\\ \frac{\partial L}{\partial w}=\sum_{i=1}^m2[(y^{(i)}-(w^Tx^{(i)}+b))(-x^{(i)})+\lambda w]\\ \frac{\partial L}{\partial b}=\sum_{i=1}^m2[(y^{(i)}-(w^Tx^{(i)}+b))(-1)\lambda w] w,b=argw,bmini=1m(y(i)(wTx(i)+b))2+λj=1nwj2wL=i=1m2[(y(i)(wTx(i)+b))(x(i))+λw]bL=i=1m2[(y(i)(wTx(i)+b))(1)λw]

同样,如果采用最小二乘法,正规方程的形式需要相应修改,并且对于样本数目少于特征维数的情况时,矩阵 ( X T X ) (X^TX) (XTX)将不满秩, ( X T X ) (X^TX) (XTX)也就不可逆,确切地说,此时方程组是不定方程组,将会有无穷多解,已有的数据不足以确定一个解,数学上常加入约束项以使得唯一解成为可能,加入L2-范数规则化项正好对应了这种方法,此时解析解如下:
w ∗ = ( X T X + λ I ) − 1 X T w^*=(X^TX+\lambda I)^{-1}X^T w=(XTX+λI)1XT

关于L1-范数和L2-范数规则化的解释是个人的总结之词,可能存在不准确,希望大家不惜赐教!

参考文献

李航《统计学习方法》
机器学习中的范数规则化之(一)L0、L1与L2范数
Sparsity and Some Basics of L1 Regularization

  • 19
    点赞
  • 95
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值