三维重建
hongbin_xu
一个苦逼的学生狗,生物特征识别与模式识别
展开
-
三维重建学习(1):基础知识:旋转矩阵与旋转向量
前言由于摄像机标定中会使用到旋转矩阵以及旋转向量的知识,所以就整理了一下有关与这一部分基础知识的笔记,并进行详细的数学推导。旋转矩阵假设坐标系分别绕着xx轴旋转ϕ\phi角,绕yy轴旋转θ\theta角,绕zz轴旋转ψ\psi角,这里旋转的角度就是我们常说的pitch, roll, yaw。设任意某点在旋转前的坐标系中的坐标是(x,y,z)(x,y,z),旋转后的坐标是(x‘,y‘,z‘)(x^{`原创 2017-12-29 10:41:37 · 26691 阅读 · 4 评论 -
三维重建学习(3):张正友相机标定推导
前言前面的几篇博客中介绍了有关相机标定的基础知识(三维重建学习(1):基础知识:旋转矩阵与旋转向量、三维重建学习(2):相机标定基础)。这次介绍一个十分经典的单目相机标定方法——张正友标定,并给出数学理论推导。基本方程模型我们首先约定如下表示: 二维点坐标:m=[uv]m = \begin{bmatrix} u \\ v \end{bmatrix},三维点坐标:M=⎡⎣⎢XYZ⎤⎦⎥M = \be原创 2018-01-04 16:47:22 · 4451 阅读 · 1 评论 -
三维重建学习(2):相机标定基础
前言在相机标定过程中,我们会碰到一些概念,比如:摄像机模型、世界坐标系、图像坐标系等等。为便于理解推导,所以又整理了相关的笔记,介绍的都是些比较基础的概念,也比较容易。相机模型针孔相机模型注:下面的两幅图片摘自: http://blog.csdn.net/xuelabizp/article/details/50314633 上图是现实中针孔相机的成像模型,物体的投影原创 2017-12-29 20:54:16 · 3693 阅读 · 3 评论 -
三维重建学习(4):张正友相机标定程序实现(OpenCV)
前言在前面的博客中( 三维重建学习(3):张正友相机标定推导),推到了张正友相机标定的数学原理,并给出了标定流程。OpenCV中已经封装好了一系列函数,我们使用这些函数可以更快捷地实现张正友相机标定。程序流程准备好一系列用来相机标定的图片;对每张图片提取角点信息;由于角点信息不够精确,进一步提取亚像素角点信息;在图片中画出提取出的角点;相机标定;对标定结果评价,计算误差原创 2018-01-06 17:23:37 · 10663 阅读 · 9 评论 -
三维重建学习(5):简单地从数学原理层面理解双目立体视觉
前言这是我前段时间学习双目视觉时做的笔记,这一篇文章不会进行过于细致的推导,仅仅会在一些理想情况下做一些简单的推导,目标是得到一个直观上的认识:双目视觉是如何得到三维立体坐标的。以后的博客还会再放上一些详细的推导,和对双目视觉提取景深的程序实现。嘛,先一步一步来吧。 后面默认都知道摄像机的针孔模型以及相机坐标系、世界坐标系、图像坐标系等等这些概念,如果不清楚请查看之前的博客:三维重建学习(2...原创 2018-02-13 22:47:57 · 2455 阅读 · 0 评论 -
迭代最近点(Iterative Closest Point, ICP)算法及matlab实现
前言通常,使用RGB-D相机或是其他方法获取到物体的三维点云后,由于采集设备不同、拍摄视角不同等等因素的影响,即使是同一个物体所得到的点云也会有较大的差异,主要是旋转或者平移的变化。对于一组图像数据集中的两幅图像,需要通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。所以,就需要对点云进行配准。 迭代最近点算法(ICP)是一...原创 2018-06-01 20:36:15 · 21866 阅读 · 11 评论