论文笔记
文章平均质量分 94
论文总结,研究方向包括:模式识别、生物特征识别、深度学习、机器学习、三维视觉。
hongbin_xu
一个苦逼的学生狗,生物特征识别与模式识别
展开
-
论文笔记:KD-Net
Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models1、四个问题要解决什么问题?3D点云识别任务。用了什么方法解决?参考KD树的结构,提出了一种新的树形结构的神经网络,用来处理不规则的点云数据。效果如何?在形状分类任务、形状检索任务以及形状部件分割任务中都取得了...原创 2019-06-27 21:41:06 · 3955 阅读 · 2 评论 -
论文笔记:PRIN: Pointwise Rotation-Invariant Networks
PRIN: Pointwise Rotation-Invariant Networks1、四个问题要解决什么问题?使用特殊结构的神经网络来提取具有旋转不变性的点云特征。用了什么方法解决?提出了一套新的网络结构:Pointwise Rotation-Invariant Network(PRIN),所提取的特征具有旋转不变性。预处理阶段,使用密度感知自适应采样(Density-A...原创 2019-06-11 17:43:15 · 2811 阅读 · 0 评论 -
论文笔记:Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks1、四个问题要解决什么问题?对卷积神经网络进行扩展,并提出一个在特定的变换(旋转、平移等,也可表示为一个特殊的群)下具有等变性的网络。用了什么方法解决?提出了一种新的卷积神经网络结构——群等变卷积神经网络(Group equivariant Convolutional Neural Network)...原创 2019-06-08 13:42:55 · 8742 阅读 · 3 评论 -
论文笔记:Spherical CNN
Spherical CNN1、四个问题要解决什么问题?3D场景下旋转不变性特征的提取。用了什么方法解决?提出了球形卷积操作,也叫作球形互相关(spherical cross-correlation)。球形卷积具有旋转不变性。为了增强计算效率,使用FFT(Fast Fourier Transform)来计算球形卷积。效果如何?在3D模型识别上效果还不错,与其他深度神经...原创 2019-06-03 20:40:27 · 3488 阅读 · 1 评论 -
论文笔记:Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks1、四个问题要解决什么问题?半监督任务。给定一个图,其中一部节点已知标签,剩下的未知,要对整个图上的节点进行分类。用了什么方法解决?提出了一种卷积神经网络的变种,即提出了一种新的图卷积方法。使用谱图卷积(spectral graph convolut...原创 2019-04-29 10:45:57 · 13493 阅读 · 0 评论 -
论文笔记:CycleGAN
CycleGAN1、四个问题要解决什么问题?图像翻译任务(image-to-image translation problems),域转换任务。用了什么方法解决?提出了CycleGAN的网络结构。目的是:通过使用一组对抗损失,学习到一个映射G:X→YG: X \rightarrow YG:X→Y,使得生成的样本G(X)G(X)G(X)的分布难以跟真实样本YYY的分布区分开来。...原创 2019-03-22 16:19:23 · 1992 阅读 · 0 评论 -
论文笔记:Geo-CNN
Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNNGeoCNN1、四个问题要解决什么问题?3D点云具有不规则的结构,不能输入普通的CNN中。因此,要提出可以直接将点云作为输入的CNN网络。许多研究对局部几何信息特征提取的关注太少,还要能对局部区域的点的几何结构进行建模。用了什么方法解决?提出...原创 2019-02-16 21:20:05 · 4026 阅读 · 3 评论 -
论文笔记:MTCNN
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional NetworksMTCNN1、四个问题要解决什么问题?人脸检测(face detection)和人脸对齐(face alignment)。用了什么方法解决?提出了一个深度级联网络结构,分成了三个阶段,从粗到精对人脸进行检测、定位...原创 2018-12-27 19:13:08 · 1372 阅读 · 1 评论 -
论文笔记:DGCNN(EdgeConv)
Dynamic Graph CNN for Learning on Point CloudsDGCNN1、四个问题要解决什么问题?使用深度学习处理3D点云。设计一个可以直接使用点云作为输入的CNN架构,同时可以获取足够的局部信息,可适用于分类、分割等任务。用了什么方法解决?提出了一个新的神经网络模块——EdgeConv。EdgeConv是可微的,并能嵌入已有的...原创 2018-12-26 10:41:30 · 46662 阅读 · 18 评论 -
论文笔记:Image Caption(Show, attend and tell)
Show, Attend and Tell: Neural Image Caption Generation with Visual AttentionShow, Attend and Tell1、四个问题要解决什么问题?Image Caption(自动根据图像生成一段文字描述)。用了什么方法解决?在Show and Tell提出的Encoder-Decoder架构的基础之上...原创 2018-12-06 15:18:22 · 3971 阅读 · 4 评论 -
论文笔记:Image Caption(Show and Tell)
Show and Tell: A Neural Image Caption GeneratorShow and Tell1、四个问题要解决什么问题?Image Caption(自动根据图像生成一段文字描述)。用了什么方法解决?作者提出了一个基于深度循环架构的生成式模型。训练时的目标是最大化这个从输入图像到目标描述语句的似然。效果如何?所提出模型在几个数据集上的效果...原创 2018-12-04 17:45:16 · 3094 阅读 · 0 评论 -
论文笔记:PointNet
PointNet: Deep Learning on Point Sets for 3D Classification and SegmentationPointNet1、四个问题要解决什么问题?3D点云是一种很重要的几何数据结构。由于其存在空间关系不规则的特点,因此不能直接将已有的图像分类分割框架套用到点云上。许多研究者会将3D点云转换为3D体素(voxel grids )或者一系...原创 2018-11-29 19:01:32 · 4302 阅读 · 1 评论 -
论文笔记:ShuffleNet v2
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture DesignShuffleNet v21、四个问题要解决什么问题?轻量化模型。用了什么方法解决?文中提出了几条设计轻量化模型的实践准则(guidelines)。Guideline 1:输入通道数与输出通道数保持相等可以最小化内存访问成...原创 2018-11-20 20:36:36 · 2285 阅读 · 2 评论 -
论文笔记:ShuffleNet v1
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile DevicesShuffleNet v11、四个问题要解决什么问题?为算力有限的嵌入式场景下专门设计一个高效的神经网络架构。用了什么方法解决?使用了两个新的操作:pointwise group convolution(组卷积)和...原创 2018-11-20 15:51:12 · 1520 阅读 · 0 评论 -
论文笔记:Git Loss
原文:Git Loss for Deep Face RecognitionGit Loss1、四个问题要解决什么问题?诸如人脸识别、指纹识别等的识别任务,测试集不确定或类别较多而样本较少的情况。one-shot-learning。最小化类内差异,最大化类间差异。用了什么方法解决?提出了一个新的loss函数——git loss。git loss是基于center loss...原创 2018-11-15 14:58:53 · 862 阅读 · 1 评论 -
论文笔记:Distilling the Knowledge
原文:Distilling the Knowledge in a Neural NetworkDistilling the Knowledge1、四个问题要解决什么问题?神经网络压缩。我们都知道,要提高模型的性能,我们可以使用ensemble的方法,即训练多个不同的模型,最后将他们的结果进行融合。像这样使用ensemble,是最简单的能提高模型性能的方法,像kaggle之类的...原创 2018-11-08 14:44:22 · 1553 阅读 · 0 评论 -
论文笔记:DeepID2
Deep Learning Face Representation by Joint Identification-VerificationDeepID21、四个问题要解决什么问题?人脸识别。主要挑战是,设计一套方法能够有效地减少类内差异,并增大类间差异。用了什么方法解决?使用face identification(人脸分类)和face verification(人脸验证)...原创 2018-11-06 20:54:30 · 1073 阅读 · 0 评论 -
论文笔记:MobileFaceNet
原文:MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile DevicesMobileFaceNet1、四个问题要解决什么问题?设计一个在手机或嵌入式设备上可实时运行且具有高精度的人脸验证CNN模型。用了什么方法解决?以MobileNet v2网络为骨架,做了一些改进...原创 2018-11-05 19:33:40 · 4383 阅读 · 0 评论 -
论文笔记:ZFNet
ZFNet1、四个问题要解决什么问题?卷积神经网络具有很好的效果,在ImageNet上取得了开创性的成果,但是我们对其却没有一个直观的认识,以及它为何效果这么好,全当成黑盒子来用。用了什么方法解决?提出了一个新的卷积神经网络可视化技术,来辅助观察中间层以及最后的分类层的输出特征图。提出了ZFNet,并应用了反卷积技术来做可视化。效果如何?ZFNet的效果在Image...原创 2018-11-04 16:23:17 · 1256 阅读 · 0 评论 -
论文笔记:ResNet v2
ResNet v21、四个问题要解决什么问题?进一步提高ResNet的性能。解释为何Identity mapping(恒等映射)的效果会比较好。用了什么方法解决?提出了一个新的残差单元结构。从理论和实验上分析了identity mapping的有效性。效果如何?使用1001层的ResNet,在CIFAR-10数据集上错误率为4.62%,在CIFAR-100数据集上...原创 2018-11-03 19:52:05 · 909 阅读 · 0 评论 -
论文笔记:FCN
原文:Fully Convolutional Networks for Semantic SegmentationFCN1、四个问题要解决什么问题?语义分割。用了什么方法解决?提出了“全卷积神经网络”,可以接收任意尺寸的输入,并给出对应大小的输出。使用一些图像分类模型(如:AlexNet、VGG、GoogLeNet)等做迁移学习。使用skip architecture的...原创 2018-10-25 17:05:13 · 994 阅读 · 0 评论 -
论文笔记:Inception v1
原文:Going Deeper with ConvolutionsInception v11、四个问题要解决什么问题?提高模型的性能,在ILSVRC14比赛中取得领先的效果。最直接的提高网络性能方法有两种:增加网络的深度(网络的层数)和增加网络的宽度(每层的神经元数)。这样的做法有如下两个缺点待改进:构建更大的网络也意味着会有更多的参数,这也会让网络更容易过拟合。同时也会需要更...原创 2018-10-22 23:32:05 · 1390 阅读 · 1 评论 -
论文笔记:YOLO
原文:You Only Look Once: Unified, Real-Time Object DetectionYOLO1、四个问题要解决什么问题?对于目标检测任务来说,速度较快的算法性能较弱,然而性能较强的算法(如:R-CNN系列)耗时则更多,很难达到实时性的要求。大多数像RCNN这类的算法流程是,第一步先获取候选区域(region proposal),接着进行后处理(消除重...原创 2018-10-22 00:26:10 · 652 阅读 · 0 评论 -
论文笔记:PointSIFT
原文:PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic SegmentationPointSIFT1、四个问题要解决什么问题?3D点云感知通常包含了三大任务:3D物体分类,3D目标检测,以及3D语义分割。在三个大任务中,3D点云的语义分割相对更具挑战性,也是这篇论文所要解决的问题。用了什么办法解决...原创 2018-10-16 11:34:27 · 9840 阅读 · 5 评论 -
论文笔记:Triplet Network
原论文:DEEP METRIC LEARNING USING TRIPLET NETWORKTriplet Network1、四个问题要解决什么问题?实质上,Triplet Network是Siamese Network的一种延伸,要解决的问题与Siamese Network的基本一致。与Siamese Network一样,适用于解决样本类别很多(或不确定),然而训练数据集的样本数又...原创 2018-10-15 20:34:34 · 13770 阅读 · 2 评论 -
论文笔记:MobileNet v2
原论文:MobileNetV2: Inverted Residuals and Linear BottlenecksMobileNet v21、四个问题要解决什么问题?与MobileNet v1所要解决的问题一样,为嵌入式设备或算力有限的场景下设计一个有效的模型。用了什么方法解决?一方面,沿用了再MobileNet v1中采用的depthwise separable conv...原创 2018-10-10 10:06:11 · 1563 阅读 · 0 评论 -
论文笔记:PPFNet
原论文:PPFNet: Global Context Aware Local Features for Robust 3D Point MatchingPPFNet1、四个问题要解决什么问题?在3D视觉中,3D几何信息的局部描述子在许多任务中扮演了很重要的角色,诸如:对应性估计、匹配、配准、物体检测以及形状恢复等。尽管近10年间,出现了一系列手工设计(hand-craft)的3D特征描...原创 2018-10-08 20:13:11 · 5010 阅读 · 9 评论 -
论文笔记:MobileNet v1
原文:MobileNets: Efficient Convolutional Neural Networks for MobileVision ApplicationsMobileNet v11、四个问题要解决什么问题?在现实场景下,诸如移动设备、嵌入式设备、自动驾驶等等,计算能力会受到限制,所以本文的目标就是构建一个小且快速(small and low latency)的模型。...原创 2018-10-07 12:59:08 · 11850 阅读 · 1 评论 -
论文笔记:残差神经网络(ResNet v1)
ResNet v11、四个问题要解决什么问题?/ 用了什么办法解决?理论上来说,深层网络的效果至少不会比浅层网络差。对于浅层网络A,深层网络B,假设B的前面部分与A完全相同,后面部分都是恒等映射,这样B至少也会与A性能相同,不会更差。在深层网络中存在梯度消失/梯度爆炸(vanishing/exploding gradients)。归一初始化(normalized init...原创 2018-10-03 16:40:29 · 14260 阅读 · 1 评论 -
论文笔记:孪生神经网络(Siamese Network)
Siamese Network原文:《Learning a Similarity Metric Discriminatively, with Application to FaceVerification》1、四个问题要解决什么问题?用于解决类别很多(或者说不确定),然而训练样本的类别数较少的分类任务(比如人脸识别、人脸认证)通常的分类任务中,类别数目固定,且每类下的样本数也较多(...原创 2018-10-01 21:54:20 · 47372 阅读 · 14 评论 -
VGGNet论文(Very Deep Convolutional Networks for Large-Scale Image Recognition)(译)
Very Deep Convolutional Networks for Large-Scale Image Recognition仅供参考,个人水平有限,如有不足谢谢指正。 原文地址:Very Deep Convolutional Networks for Large-Scale Image Recognition摘要在这项工作中,我们研究了卷积网络的深度对大规模图像识别任务精度的...翻译 2018-06-22 17:42:18 · 8587 阅读 · 0 评论 -
AlexNet论文(ImageNet Classification with Deep Convolutional Neural Networks)(译)
前言最近一直比较忙,总算才有时间看点深度学习的论文。这篇论文是大神Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton三人提出的AlexNet深度卷积神经网络,摘得了2010年ILSVRC比赛的桂冠。AlexNet在现在也经常会用到,可以说是很经典的一个CNN框架了。出于学习的目的,一方面可以做笔记,一方面也可以督促自己的学习,我才打算翻译下这...原创 2018-05-10 20:21:31 · 100304 阅读 · 10 评论 -
一个艺术风格化的神经网络算法(A Neural Algorithm of Artistic Style)(译)
文章地址:《A Neural Algorithm of Artistic Style》. arXiv:1508.06576 Github链接:https://github.com/jcjohnson/neural-style 对于好的艺术作品,尤其是画作,人们已经掌握了通过在一幅图像的内容和风格中构成复杂的相互影响来创作独特的视觉体验的技能。因此这个过程的算法基础是未知的,并且不存在具有相翻译 2018-01-10 10:13:30 · 5052 阅读 · 1 评论