Linear Regression and Logistic Regression

Linear Regression

Linear regression uses the general linear equation  Y=b0+(biXi)+ϵ where  Y  is a continuous dependent variable and independent variables  Xi  are usually continuous (but can also be binary, e.g. when the linear model is used in a t-test) or other discrete domains.  ϵ ϵ is a term for the variance that is not explained by the model and is usually just called "error". Individual dependent values denoted by  Yj  can be solved by modifying the equation a little:  Yj=b0+(biXij)+ϵj

Image result


Logistic Regression

Logistic regression is another generalized linear model (GLM) procedure using the same basic formula, but instead of the continuous  Y , it is regressing for the probability of a categorical outcome. In simplest form, this means that we're considering just one outcome variable and two states of that variable- either 0 or 1.

In other words,  Y  is a categorical variable,  Xi  are usually continuous


The equation for the probability of  Y=1  looks like this:

P(Y=1)=11+e(b0+(biXi))


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值