医疗疾病检测与驾驶员睡意检测技术解析
1. 医疗疾病检测系统
1.1 背景与目标
在医疗领域,医院因各种疾病导致排队现象日益严重,医生检测疾病需不同测试方法,每位患者检测及出报告约需 2 - 3 小时,且后续看医生还需额外时间。一些人口众多但医生数量少的国家,检测率较低。因此,目标是开发基于网络的解决方案,助力医生提高各类疾病检测效率,尽可能让世界远离疾病。同时,即便医生仅通过观察患者 X 光或显微镜图像,也难以精准检测疾病。
1.2 技术应用
1.2.1 整体系统架构
开发基于人工智能的智能系统,通过输入如 X 光、血压、显微镜图像等参数,检测多种疾病。开发不同算法后,将其与 Firebase 在线数据库集成,前端开发基于 Python 和 Flask 的网站,方便医生为不同患者提供疾病检测输入。
1.2.2 系统工作流程
医生通过网站输入数据并获取输出。以检测患者是否感染新冠为例,医生上传患者 X 光图像,图像会被发送到 Firebase 在线数据库。Firebase 采用异步方法将数据或图像发送到服务器端的 AI 算法。服务器接收到图像后,加载针对不同疾病的预训练 AI 算法,将数据或图像作为输入提供给模型。模型执行后,服务器收集输出并再次发送到 Firebase,Firebase 再将预测数据发送给请求的医生。开发服务器端 AI 算法时,使用数据挖掘技术和算法,如基于深度学习的 CNN、香草神经网络、VGG - 19 和集成学习。
超级会员免费看
订阅专栏 解锁全文
757

被折叠的 条评论
为什么被折叠?



