非负矩阵分解中基于L1和L2范式的稀疏性约束

本文介绍了在非负矩阵分解中如何使用L1和L2范式来实现稀疏性约束。L1范式能产生稀疏解,有助于特征选择,而L2范式主要用于防止过拟合。通过结合两者,可以建立新的约束条件,定义稀疏度,并给出目标函数。文中还提供了投影算法的详细步骤,该算法在给定稀疏度条件下找到最接近原向量的解。
摘要由CSDN通过智能技术生成

L1、L2范式

    假设需要求解的目标函数为:

                    E(x) = f(x) + r(x)

    其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型进行限制,根据模型参数的概率分布不同,r(x)一般有:L1范式约束(模型服从高斯分布),L2范式约束(模型服从拉普拉斯分布);其它的约束一般为两者组合形式。

    L1范式约束一般为:

        

    L2范式约束一般为:

            

     L1范式可以产生比较稀疏的解,具备一定的特征选择的能力,在对高维特征空间进行求解的时候比较有用;L2范式主要是为了防止过拟合。

稀疏性约束

    在文章Non-negative Matrix Factorization With Sparseness Constraints中,将L1范式和L2范式组合起来形成新的约束条件,用稀疏度来表示L1范式和L2范式之间的关系:

                    
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值