基于L1和L2范式的稀疏性约束最优化求解

本文探讨基于L1和L2范式的最优化求解,主要涉及规则化函数和L0、L1、L2范式。L1范式能保持模型的稀疏性,L2范式有助于防止过拟合。文章引用了多个资源,深入浅出地解释了这些概念及其在模型训练中的应用。
摘要由CSDN通过智能技术生成

基于L1和L2范式的最优化求解

基础知识

规则化函数

《机器学习中的范数规则化之(一)L0、L1与L2范数》中谈到监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。

w=argminwiL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值