基于L1和L2范式的最优化求解
基础知识
规则化函数
《机器学习中的范数规则化之(一)L0、L1与L2范数》中谈到监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。
w∗=argminw∑iL
《机器学习中的范数规则化之(一)L0、L1与L2范数》中谈到监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。