高等数学学习笔记——第四十六讲——反常积分

 

1. 问题引入:定积分(常义积分的特点:积分区间有限,被积函数有界),推广为反常积分

 

2. 如何计算无界平面图形的面积?(无界函数的积分和无穷区间上的积分)

 

3. 无穷区间反常积分的收敛与发散的定义

 

4. 无穷区间反常积分也满足类似牛顿-莱布尼兹公式的关系

 

5. p-积分与p-级数

 

6. 对反常积分,只有在收敛的条件下才能使用“偶倍奇零”的性质

 

7. 无界函数的反常积分的收敛与发散(瑕点,瑕积分)

 

8. 无界函数反常积分也满足类似牛顿-莱布尼兹公式的关系

 

9. 比较判别法

 

10. 伽马函数(Γ函数)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值