反常积分(1.反常积分概念)

定义:

无穷积分

设函数f定义在无穷区间[a,+\infty )上,且在任何有限区间[a,u]上可积,如果存在极限\lim_{u\to +\infty}\int_{a}^{u}f(x)dx=J(1)则称此极限J为函数f[a,+\infty )上的无穷反常积分(简称无穷积分),记作J=\int_{a}^{+\infty}f(x)dx并称\int_{a}^{+\infty}f(x)dx收敛,如果极限(1)不存在,为方便起见,称\int_{a}^{+\infty}f(x)dx发散。
瑕积分
设函数f定义在区间(a,b]上,在点a的任一右邻域上无界,但在任何内闭区间[u,b]\subset (a,b]上有界且可积,如果存在极限\lim_{u\to a^+}\int_{u}^{b}f(x)dx=J(2)则称此极限为无界函数f(a,b]上的反常积分,记作J=\int_{a}^{b}f(x)dx,并称反常积分\int_{a}^{b}f(x)dx收敛,如果极限(2)不存在,反常积分\int_{a}^{b}f(x)dx发散,点a称为f的瑕点,无界函数反常积分\int_{a}^{b}f(x)dx又称为瑕积分。

典例

例1.讨论无穷积分\int_{1}^{+\infty}\frac{dx}{x^p}的收敛性。

解:由于\int_{1}^{u} dx/x^p = \left\{\begin{matrix} (1/(1-p))(u^1^-^p-1),p\neq 1 & & \\ ln u,p=1 \end{matrix}\right.\lim_{u\to +\infty} \int_{1}^{u}dx/x^p= \left\{\begin{matrix} 1/p-1,p>1&\\ln u,p=1. \end{matrix}\right因此当p>1时收敛,其值为\frac{1}{p-1}p\leqslant 1时发散于+\infty.

例2.讨论瑕积分\int_{0}^{1}\frac{dx}{x^p}(p>0)的收敛性。

解:被积函数在(0,1]上连续,x=0为其瑕点。由于\int_{u}^{1}dx/x^p= \left\{\begin{matrix}1/1-p(1-u^{1-p}),p\neq 1&\\ -ln u,p=1 \end{matrix} \right,(0<u<1)\lim_{u\to 0^+}\int_{u}^{1}x^{-p}dx= \left\{\begin{matrix} 1/1-p,p<1&\\ +\infty ,p\geqslant 1\end{matrix}\right故当0<p<1时,瑕积分收敛于\frac{1}{1-p}p\geqslant 1时,瑕积分发散于+\infty

综上:反常积分\int_{0}^{+\infty }\frac{dx}{x^p}(p>0)是发散的。

 

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值