定义:
无穷积分
设函数定义在无穷区间上,且在任何有限区间上可积,如果存在极限(1)则称此极限为函数在上的无穷反常积分(简称无穷积分),记作并称收敛,如果极限(1)不存在,为方便起见,称发散。
瑕积分
设函数定义在区间上,在点a的任一右邻域上无界,但在任何内闭区间上有界且可积,如果存在极限(2)则称此极限为无界函数在上的反常积分,记作,并称反常积分收敛,如果极限(2)不存在,反常积分发散,点a称为的瑕点,无界函数反常积分又称为瑕积分。
典例
例1.讨论无穷积分的收敛性。
解:由于因此当p>1时收敛,其值为当时发散于.
例2.讨论瑕积分的收敛性。
解:被积函数在(0,1]上连续,x=0为其瑕点。由于且故当0<p<1时,瑕积分收敛于当时,瑕积分发散于。
综上:反常积分是发散的。