1. 问题的引入——天气预报中的卫星云图、局部地区等压线等
2. 如何刻画二元函数沿不同方向的变化?(方向导数)函数沿什么方向变化最快?(梯度方向)
3. 二元函数的偏导数反映了函数沿平行于坐标轴方向的变化率(注:下图中的偏导数应该是标反了)
4. 函数在一段有向距离上的平均变化率
5. 方向导数的定义(方向导数反映了函数在某点上沿某个方向的变化率;方向导数的正负号表示函数的增减性,方向导数的大小表示变化的快慢)
6. 方向导数是偏导数的推广
7. 方向导数的几何意义(函数切线与给定方向的夹角的正切值)
8. 方向导数的计算方法
9. 梯度向量(梯度)的定义
10. 方向导数与梯度的关系:方向导数是梯度在给定方向上的投影;梯度方向是函数增加最快的方向;负梯度方向是函数减小最快的方向;与梯度正交的方向函数变化率等于零
11. 梯度的几何意义:函数在一点的梯度垂直与通过该点的等值线,指向函数增大的方向
12. 梯度的应用非常广泛:河流的流向、行进路线的选择、丘壑的形成、风向的确定等