高等数学学习笔记——第七十讲——方向导数与梯度

本文深入探讨了方向导数的概念,它是偏导数的推广,用于描述二元函数在任意方向上的变化率。文章解释了方向导数与梯度的关系,即方向导数是梯度在指定方向上的投影,而梯度方向标志着函数增长最快的路径。同时,介绍了梯度的几何意义及其在实际应用中的广泛作用,如河流流向、地形分析等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 问题的引入——天气预报中的卫星云图、局部地区等压线等

 

2. 如何刻画二元函数沿不同方向的变化?(方向导数)函数沿什么方向变化最快?(梯度方向)

 

3. 二元函数的偏导数反映了函数沿平行于坐标轴方向的变化率(注:下图中的偏导数应该是标反了)

 

4. 函数在一段有向距离上的平均变化率

 

5. 方向导数的定义(方向导数反映了函数在某点上沿某个方向的变化率;方向导数的正负号表示函数的增减性,方向导数的大小表示变化的快慢)

 

6. 方向导数是偏导数的推广

 

7. 方向导数的几何意义(函数切线与给定方向的夹角的正切值)

 

8. 方向导数的计算方法

 

9. 梯度向量(梯度)的定义

 

10. 方向导数与梯度的关系:方向导数是梯度在给定方向上的投影;梯度方向是函数增加最快的方向;负梯度方向是函数减小最快的方向;与梯度正交的方向函数变化率等于零

 

11. 梯度的几何意义:函数在一点的梯度垂直与通过该点的等值线,指向函数增大的方向

 

12. 梯度的应用非常广泛:河流的流向、行进路线的选择、丘壑的形成、风向的确定等

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值