线性代数学习笔记——第四讲——矩阵乘法的定义

 

1. 矩阵乘法的应用示例

2. 线性方程组可用矩阵表示

3. 矩阵乘法的定义(自己的表述:积的元素=左行右列元素依次相乘再相加)

4. 矩阵的乘积为零矩阵,并不能说明至少有一个因子等于零矩阵;

 

 

 

矩阵乘法一般不满足消去律(AB=AC,A不等于零矩阵,不能说明B一定等于C),举反例如下:

A  B   AB 
11 12  46
22 34  812
         
         
A  C   AC 
11 32  46
22 14  812
         
         
         
AB = AC, A≠> B = C      

5. 矩阵乘法一般不满足交换律

6. 同阶对角阵相乘,满足交换律

 7. 单位矩阵左乘右乘一个矩阵,结果还是该矩阵

8. 矩阵乘法和数乘完全不是一个概念

 9. 数的乘法可推广到矩阵乘法(数的乘法是矩阵乘法的一种特例:可看成两个1阶方阵的乘积)。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值