本篇笔记首先回顾了伴随矩阵,随后给出了逆矩阵的定义,并通过定理给出了采用伴随矩阵法求逆矩阵的公式以及推论,由于伴随矩阵法求逆矩阵计算量过于复杂,一般不常用,更常用的方法是后续介绍的初等变换法;使用推论证明某矩阵的逆等于另一矩阵的关键在于:验证某矩阵乘以另一矩阵等于单位阵。然后介绍矩阵方程,需要注意求矩阵方程的几大易错点,最后还介绍了逆矩阵的性质,并对伴随矩阵做了总结。
1 伴随矩阵回顾
对于方阵,有以下万能公式: A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E。
思考:
(1) 任何方阵都有伴随矩阵吗?
答案是肯定的,因为按照求伴随矩阵的步骤一定能求出来。
(2) 如果只有一个元素的矩阵,如何求它的伴随矩阵?
例如 A = [ 5 ] A=[5] A=[5],因为根据求伴随矩阵的步骤,无法求元素的代数余子式。
所以只能根据上面的公式计算:
A A ∗ = ∣ A ∣ E AA^*=|A|E AA∗=∣A∣E,即: [ 5 ] A ∗ = 5 E [5]A^*=5E [5]A∗=5E
所以: A ∗ = E = [ 1 ] A^*=E=[1] A∗=E=[1]
2 逆矩阵的定义
设 A A A是一个 n n n阶方阵,如果存在同阶方阵 B B B,使得 A B = B A = E AB=BA=E AB=BA=E,那么 B B B就叫 A A A的逆矩阵,记作: A − 1 = B A^{-1}=B A−1=B。
A − 1 = B A^{-1}=B A−1=B表示 A A A的逆矩阵是 B B B,与数字运算(如 a − 1 = 1 a a^{-1}=\frac{1}{a} a−1=a1)不同, A − 1 = 1 A A^{-1}=\xcancel{\frac{1}{A}} A−1=A1 是错误的。
逆矩阵满足以下三个基本事实:
① 未必所有方阵均可逆。
如: O O O矩阵, O B = B O = O OB=BO=O OB=BO=O,永远不可能等于 E E E。
② 如果一个方阵可逆,那么它的逆矩阵是唯一的。
证明:假设方阵 A A A的逆矩阵为 B 1 B_1 B1和 B 2 B_2 B2。
根据逆矩阵的定义: A B 1 = B 1 A = E AB_1=B_1A=E AB1=B1A=E, A B 2 = B 2 A = E AB_2=B_2A=E AB2=B2A=E
所以: B 1 = B 1 E = B 1 ( A B 2 ) = ( B 1 A ) B 2 = E B 2 = B 2 B_1=B_1E=B_1(AB_2)=(B_1A)B_2=EB_2=B_2 B1=B1E=B1(AB2)=(B1A)B2=EB2=B2
即: B 1 = B 2 B_1=B_2 B1=B2
所以逆矩阵是唯一的。
③ 如果方阵 A A A可逆,那么 A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA−1=A−1A=E。
3 伴随矩阵法求逆矩阵
一个方阵究竟满足什么条件才可逆?
(1) 如何判断可逆?
(2) 逆矩阵 A − 1 A^{-1} A−1是什么?
定义:若方阵 A A A的行列式 ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0,该方阵叫做非奇异(非退化、满秩)矩阵;反之,若方阵 A A A的行列式 ∣ A ∣ = 0 |A|=0 ∣A∣=0,该方阵叫做奇异(退化、降秩)矩阵。
定理2.4.2:矩阵 A A A可逆的充要条件是 ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0,并且 A − 1 = 1 ∣ A ∣ A ∗ \color{red}{A^{-1}=\frac{1}{|A|}A^*} A−1=∣A∣1A∗。
证明:
充分性:假设 ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0,因为方阵有: A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E(所有方阵都成立),所以等式中都除以 ∣ A ∣ |A| ∣A∣得: A ( 1 ∣ A ∣ A ∗ ) = ( 1 ∣ A ∣ A ∗ ) A = E A(\frac{1}{|A|}A^*)=(\frac{1}{|A|}A^*)A=E A(∣A∣1A∗)=(∣A∣1A∗)A=E(只有当 ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0才成立),根据逆矩阵的定义可知: 1 ∣ A ∣ A ∗ \frac{1}{|A|}A^* ∣A∣1A∗就是 A A A的逆矩阵,所以: A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A−1=∣A∣1A∗。
必要性:如果 A A A可逆,那么 A A − 1 = E AA^{-1}=E AA−1=E,两边同时取行列式得: ∣ A A − 1 ∣ = ∣ E ∣ |AA^{-1}|=|E| ∣AA−1∣=∣E∣,即: ∣ A ∣ ∣ A − 1 ∣ = 1 |A||A^{-1}|=1 ∣A∣∣A−1∣=1,所以 ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0。
该定理解决了上面的两个问题:
(1) 如何判断可逆? ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0;
(2) 逆矩阵 A − 1 A^{-1} A−1是什么? A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A−1=∣A∣1A∗。
推论:假设矩阵 A A A和矩阵 B B B均为 n n n阶方阵,如果 A B = E AB=E AB=E或 B A = E BA=E BA=E,则可知 A A A可逆,并且 A − 1 = B A^{-1}=B A−1=