均方根信息滤波(SRIF)测试(三)

本文介绍了均方根信息滤波(SRIF)的C++实现,包括测量更新和时间更新的过程。通过示例代码展示了如何使用SRIF进行状态估计,同时提供了模拟数据进行滤波效果验证。
摘要由CSDN通过智能技术生成
均方根信息滤波(SRIF)测试(三)
 数据处理中对时变参数的估计比较常见,而时变参数必然涉及到参数之间的状态转移以及其过程噪声。因此有必要在均方根信息滤波中加入过程噪声的处理以及状态转移矩阵。仍然以抛物线为例,对其进行了模拟及验证。直接上代码。相关函数代码可见 http://blog.csdn.net/hpulizhen/article/details/50420636

/*

* Author: zhen.LI

* date: 2015 12 25, Merry Christmas!!

该函数是包含有状态转移过程以及状态方程过程噪声的滤波算法

* reference: P121, equation 2.28 and  2.29

* equation 2.28 is measuremant update, measruement model: z=Ax+v;

* equation 2.29 is the time update, state model: x1 = PHI*X0 + G*w0;

* comments: G: nrow = xnum, ncol =wnum; w0: nrow = wnum, ncol=1;

* inputs:

*       wnum           xnum          1

*      | Rw           Rwx           zw | wnum

* IM = |                               |

*      | 0          R(j+1)     z^(j+1) | xnum

* z^ = R*x0; z^,R are a priori measurement value and covariance(P0 = R^-1*R^-T)

* IM should be initialized before the estimation process; nrow = xnum+wnum; ncol = xnum+wnum+1

* A: the design matrix for measurement equation; nrow= obsnum, ncol = xnum

* z: the current obs value, nrow = obsnum, ncol = 1;

* PHI: the inversion of the state transformation matrxi(IT MUST BE UNSINGULAR); nrow = xnum, ncol = xnum;

* G :  the coefficient of process noise ; nrow = xnum, ncol= wnum;

*/

void SRIF( int xnum, int obsnum, int wnum,double* IM,double* A,double* z,

          double* PHI,double* G)

{

int i = 0, j = 0 , k = 0 ;

int nrow_DM = xnum+obsnum;

int ncol_DM = xnum+1;

double* DM = new double[nrow_DM*ncol_DM];

memset(DM,0,sizeof(double)*nrow_DM*ncol_DM);

    double sum =0.0, tmp =0.0;

/*      xnum  1

*      | R   z^| xnum

* DM = |       |

*      | A   z | obsnum

*

*/

for( i = 0 ; i< nrow_DM; i++ )

{

for( j = 0 ; j< ncol_DM; j++ )

{

if( i< xnum && j< xnum )  // R part, data equation

{

                DM[i*ncol_DM+j] = IM[(i+wnum)*(xnum+wnum+1)+j+wnum];

}

else if( i<xnum && j>=xnum ) // z^ part, data equation

{

                DM[i*ncol_DM+j] = IM[(i+wnum)*(xnum+wnum+1)+j+wnum];

}

else if( i>= xnum && j<xnum ) // A part , measurement equation

{

DM[i*ncol_DM+j] = A[(i-xnum)*xnum+j]; 

}

else if( i>= xnum && j>=xnum ) // z part, measurement equation

{

DM[i*ncol_DM+j] = z[i-xnum];

}

}

}// end of the formation of matrix DM

    

    printf("measurement updata(before) DM matrix:\n");

    for( i = 0 ; i< nrow_DM; i++ )

    {

        for( j = 0 ; j< ncol_DM; j++ )

        {

            

            

当然可以!以下是一个简单的算法类示例,包括最小二乘算法(Least Squares)、卡尔曼滤波算法(Kalman Filter)和方根信息滤波算法(Root Mean Square Information Filter)的实现: ```python import numpy as np class Algorithms: @staticmethod def least_squares(x, y): A = np.vstack([x, np.ones(len(x))]).T m, c = np.linalg.lstsq(A, y, rcond=None)[0] return m, c @staticmethod def kalman_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise): estimate = initial_estimate error = initial_error for measurement in measurements: # Prediction estimate = estimate error = error + process_noise # Update kalman_gain = error / (error + measurement_noise) estimate = estimate + kalman_gain * (measurement - estimate) error = (1 - kalman_gain) * error return estimate @staticmethod def rms_information_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise): estimate = initial_estimate error = initial_error for measurement in measurements: # Prediction estimate = estimate error = error + process_noise # Update info_gain = 1 / (1 / error + 1 / measurement_noise) estimate = estimate + info_gain * (measurement - estimate) error = info_gain return estimate # 示例用法 x = np.array([1, 2, 3, 4, 5]) y = np.array([2, 3, 4, 5, 6]) m, c = Algorithms.least_squares(x, y) print(f"Least Squares: y = {m}x + {c}") measurements = np.array([1.1, 2.2, 3.3, 4.4, 5.5]) initial_estimate = 0 initial_error = 1 process_noise = 0.2 measurement_noise = 0.1 kf_estimate = Algorithms.kalman_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise) print(f"Kalman Filter estimate: {kf_estimate}") rms_estimate = Algorithms.rms_information_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise) print(f"RMS Information Filter estimate: {rms_estimate}") ``` 此算法类提供了最小二乘算法(Least Squares)、卡尔曼滤波算法(Kalman Filter)和方根信息滤波算法(Root Mean Square Information Filter)的实现。您可以根据需要将其导入您的代码,并使用相应的方法进行计算。 请注意,这只是一个简单的示例,实际应用中可能需要更多的参数和逻辑来处理不同的情况。希望对您有所帮助!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值