信息滤波

对待事物,从对比和更高层次先去理解会透彻很多


像卡尔曼滤波,高斯是用它的矩参数来描述的,也就是均值(一阶矩),方差(二阶矩)就可以描述一个滤波。还有一种和卡尔曼滤波对偶的滤波叫做信息滤波(information filter),就是用它的正则参数来表述,用一个信息矩阵和一个信息向量来描述

信息矩阵为协方差矩阵的逆
信息矩阵
信息向量
信息向量
当然,信息滤波这个东西存在肯定是有它的应用意义的,例如,如果要表示不确定性只用将信息矩阵等于0即可,但是如果是在卡尔曼滤波中要表示不确定,意思就是无穷级的协方差

信息滤波及其扩展方法,例如之前提到的扩展信息滤波,使机器人能够进行信息整合,而不是立即将信息转化成概率。这一点在涉及成百甚至更多变量的复杂估计问题时有很大的优势。

上面这两种都是参数滤波,也就是用类似均值方差这种的参数就可以描述一个滤波
下面有几种是非参数滤波的。
他们并不用高斯去估计后验,而是根据有穷数量的值去估计后验。主要代表有直方图滤波,离散贝叶斯滤波和粒子滤波

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当然可以!以下是一个简单的算法类示例,包括最小二乘算法(Least Squares)、卡尔曼滤波算法(Kalman Filter)和均方根信息滤波算法(Root Mean Square Information Filter)的实现: ```python import numpy as np class Algorithms: @staticmethod def least_squares(x, y): A = np.vstack([x, np.ones(len(x))]).T m, c = np.linalg.lstsq(A, y, rcond=None)[0] return m, c @staticmethod def kalman_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise): estimate = initial_estimate error = initial_error for measurement in measurements: # Prediction estimate = estimate error = error + process_noise # Update kalman_gain = error / (error + measurement_noise) estimate = estimate + kalman_gain * (measurement - estimate) error = (1 - kalman_gain) * error return estimate @staticmethod def rms_information_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise): estimate = initial_estimate error = initial_error for measurement in measurements: # Prediction estimate = estimate error = error + process_noise # Update info_gain = 1 / (1 / error + 1 / measurement_noise) estimate = estimate + info_gain * (measurement - estimate) error = info_gain return estimate # 示例用法 x = np.array([1, 2, 3, 4, 5]) y = np.array([2, 3, 4, 5, 6]) m, c = Algorithms.least_squares(x, y) print(f"Least Squares: y = {m}x + {c}") measurements = np.array([1.1, 2.2, 3.3, 4.4, 5.5]) initial_estimate = 0 initial_error = 1 process_noise = 0.2 measurement_noise = 0.1 kf_estimate = Algorithms.kalman_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise) print(f"Kalman Filter estimate: {kf_estimate}") rms_estimate = Algorithms.rms_information_filter(measurements, initial_estimate, initial_error, process_noise, measurement_noise) print(f"RMS Information Filter estimate: {rms_estimate}") ``` 此算法类提供了最小二乘算法(Least Squares)、卡尔曼滤波算法(Kalman Filter)和均方根信息滤波算法(Root Mean Square Information Filter)的实现。您可以根据需要将其导入您的代码,并使用相应的方法进行计算。 请注意,这只是一个简单的示例,实际应用中可能需要更多的参数和逻辑来处理不同的情况。希望对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值