炮兵阵地
Description
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。 Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。 Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input 5 4
PHPP
PPHH
PPPP
PHPP
PHHP
Sample Output 6
Source
分析一 盲目搜索 初学者一般看到此题估计会无从着手。如果用“万能”的搜索算法,回溯或者枚举所有的状态来求解的话,那算法复杂度将是O(2^(m*n))。 分析二 动态规划 观察地图,对于任何一行的炮兵放置都与其上下几行的放置有关。如果我们逐行的放置炮兵,并且每次都知道前面每行所有放置法的最优解(即最大炮兵数),那么我们要求放置到当行时某种放置法的最优解,就可以枚举前面与其兼容(即不会发生冲突)的所有放置法,从中求得本行的最优解。 动态方程 f[i][j][k] = max{f[i-1][k][p]+c[j]},(枚举p的每种状态) 问题如何描述 好了,思路大致都准备好了。但如何描述问题呢? 状态压缩 现在引入最关键的感念,状态压缩 相关运算 我们现在就可以用与运算&判断两个压缩状态间、压缩状态与压缩地图间是否冲突。 困惑? 现在似乎大功告成了,但是所写的代码提交运行结果为,Time Limit Exceed,即超时。 复杂度解析 看看题目条件吧!Time Limit: 2000MS Memory Limit:65536K 算法加速 不! 求合法状态的代码段 sNum = 0; //合法状态总数 优化 考虑到本行最优解f[i][j][k]只与前一行f[i-1][k][p]有关,也就是说每次计算只需要前一行的最优解就可以了。 滚动数组 借助滚动数组技术,可以轻松实现这个转换! 运行结果 Problem: 1185 User: new_star 小结 1.最优子结构和无后效性 |