目录
前言:正弦信号和余弦信号仅在相位上相差,因此经常统称为正弦信号。
1、正弦信号
,其中A是振幅,f是频率,是初相
假定:A=1,f=1Hz, =0
则其波形如下:
余弦信号与正弦信号相位上差,图像上表示为正弦信号向左平移 1/4个周期
2、正弦信号特性
1)积分特性
对一个正弦信号做积分时,当积分区间是正弦信号周期的整数倍时,积分结果为0。
根据积分的几何意义:信号波形与时间轴的积分区间部分围出一个封闭图形,对信号求积分就是求这个封闭图形面积的代数和。上述结论显然是成立的,由正弦信号的周期性和对称性直接就可以得到,如图2-6所示。
2)正交特性
正弦信号集合{sin2πf0t,cos2πf0t,sin4πf0t,cos4πf0t,sin6πf0t,cos6πf0t,…}
由基波{sin2πf0t,cos2πf0t}和二次谐波{sin4πf0t,cos4πf0t}等各次谐波组成。
在这个正弦信号集合中: 任意2个不同的正弦信号的乘积在基波周期内的积分结果都为0。
任意1个正弦信号与自身的乘积在基波周期内的积分结果都为。
证明:
由三角函数的和差化积公式:
cos(α+β)=cos α cos β-sin αsin β
cos(α-β)=cos α cos β+sin αsin β
sin(α+β)=sin α cos β+cos αsin β
sin(α-β)=sin α cos β-cos αsin β
很容易推导出三角函数的积化和差公式:
将α=2mπf0t,β=2nπf0t代入积化和差公式,得
当m≠n时,分别对式(2-1)、(2-2)、(2-3)在基波周期内进行积分,由于m-n次谐波分量和m+n次谐波分量的积分结果都是0,由正弦信号的积分特性,因此得:
当m=n时,式(2-1)、(2-2)、(2-3)三个式子化为:
分别对式(2-4)、(2-5)、(2-6)在基波周期内进行积分,由于m+n次谐波分量的积分结果都是0,所以得:
到这就证完了。
因此,当且仅当正弦信号与其自身的乘积在整数倍周期内积分不等于0,其他的任意2个组合在周期内积分都等于0.
学习书籍
--陈爱军《深入浅出通信原理》