每日一问 --什么是正弦信号?正弦信号有哪些特性?

目录

1、正弦信号

2、正弦信号特性

1)积分特性

 2)正交特性


前言:正弦信号和余弦信号仅在相位上相差\frac{\pi }{2},因此经常统称为正弦信号。

1、正弦信号

s(t) = Asin(2\pi ft+\varnothing ),其中A是振幅,f是频率,\phi是初相

假定:A=1,f=1Hz, \phi=0

s(t)=sin2\pi t其波形如下:

余弦信号与正弦信号相位上差\frac{\pi }{2},图像上表示为正弦信号向左平移 1/4个周期

2、正弦信号特性

1)积分特性

对一个正弦信号做积分时,当积分区间是正弦信号周期的整数倍时,积分结果为0。

根据积分的几何意义:信号波形与时间轴的积分区间部分围出一个封闭图形,对信号求积分就是求这个封闭图形面积的代数和。上述结论显然是成立的,由正弦信号的周期性和对称性直接就可以得到,如图2-6所示。

 

 2)正交特性

正弦信号集合{sin2πf0t,cos2πf0t,sin4πf0t,cos4πf0t,sin6πf0t,cos6πf0t,…}

由基波{sin2πf0t,cos2πf0t}和二次谐波{sin4πf0t,cos4πf0t}等各次谐波组成。

在这个正弦信号集合中: 任意2个不同的正弦信号的乘积在基波周期内的积分结果都为0

 任意1个正弦信号与自身的乘积在基波周期内的积分结果都为T{0}/2

 证明:

由三角函数的和差化积公式:

cos(α+β)=cos α cos β-sin αsin β

cos(α-β)=cos α cos β+sin αsin β

sin(α+β)=sin α cos β+cos αsin β

sin(α-β)=sin α cos β-cos αsin β

很容易推导出三角函数的积化和差公式:

将α=2mπf0t,β=2nπf0t代入积化和差公式,得

 

当m≠n时,分别对式(2-1)、(2-2)、(2-3)在基波周期内进行积分,由于m-n次谐波分量和m+n次谐波分量的积分结果都是0,由正弦信号的积分特性因此得: 

 

当m=n时,式(2-1)、(2-2)、(2-3)三个式子化为:

 分别对式(2-4)、(2-5)、(2-6)在基波周期内进行积分,由于m+n次谐波分量的积分结果都是0,所以得:

 到这就证完了。

因此,当且仅当正弦信号与其自身的乘积在整数倍周期内积分不等于0,其他的任意2个组合在周期内积分都等于0.

学习书籍

         --陈爱军《深入浅出通信原理》

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南邶风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值