使用WSL2配置深度学习环境(详细版)

1.wls2安装

window11系统

1.1 为Linux启用子系统

使用win+R,输入optionalfeatures
在这里插入图片描述
勾选适用于linux的windows子系统和虚拟机平台

在这里插入图片描述

1.2 以管理员身份打开 PowerShell,输入以下命令:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

运行后重启计算机

1.3下载更新包

下载地址:Linux内核更新包
直接运行安装即可

1.4 将 WSL 2 设置为默认版本

wsl --set-default-version 2

1.5 安装ubuntu

打开Microsoft Store,输入ubuntu,找到合适的版本安装即可
在这里插入图片描述

需要为 Linux 创建用户帐户和密码。

2.wls2迁移到D盘

wls2默认的安装位置为c盘,一般来说系统盘的容量通常来说是有限的,需要更改安装目录。

1.查看 WSL

wsl -l

2.导出Linux 系统镜像

 wsl --export Ubuntu-20.04 d:\ubuntu20.04.tar

3.移除之前注册的 WSL

wsl --unregister Ubuntu-20.04

4.我们重新注册 WSL

wsl --import ubuntu d:\WSL\Ubuntu-20.04 d:\ubuntu20.04.tar

我们发现默认账号是 root,我们可以修改默认账号为我们自己的账号。运行如下代码

vim /etc/wsl.conf

添加
[user]
default=账户名称
在这里插入图片描述

3.深度学习环境搭建

1.安装Anaconda

1.下载Anaconda

wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

2.下载完成运行

sh Anaconda3-2024.02-1-Linux-x86_64.sh

2.安装cuda

1.运行nvidia-smi查看cuda版本
在这里插入图片描述
2.安装gcc

sudo apt-get install gcc

3.本文安装的cuda版本为12.1,cuda下载链接cuda12.1
在这里插入图片描述

wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
sudo sh cuda_12.1.1_530.30.02_linux.run

4.添加环境变量

sudo vim ~/.bashrc

vim编辑器使用: 按i进入编辑模式,在末尾将以下代码复制进去,然后按esc推出编辑模式,输入:wq保存并退出

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64
export PATH=$PATH:/usr/local/cuda-12.1/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.1

5.输入source ~/.bashrc刷新环境变量,输入nvcc -V查看cuda是否已经安装成功
在这里插入图片描述

3.安装cudnn

1.cudnn下载链接cudnn
选择对应的cuda,下载Linux版本
在这里插入图片描述
2.cudnn文件复制到cuda中

sudo tar -xvf cudnn-linux-x86_64-8.9.6.50_cuda12-archive.tar.xz
cd cudnn-linux-x86_64-8.9.6.50_cuda12-archive
sudo cp -r lib/* /usr/local/cuda-12.1/lib64/
sudo cp -r include/* /usr/local/cuda-12.1/include/
sudo chmod a+r /usr/local/cuda-12.1/lib64/libcudnn*
sudo chmod a+r /usr/local/cuda-12.1/include/cudnn*

4.pytorch安装

pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121

验证是否成功
在这里插入图片描述

5.window远程桌面连接

5.1 更换阿里云源
# 备份原来的软件源
sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak
# 编辑软件源
sudo vim /etc/apt/sources.list

将源内容替换如下

deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse

先按esc推出编辑模式,再按:wq保存退出。

5.2 安装gnome桌面环境
# 更新软件源
sudo apt-get update -y
# 升级所有软件
sudo apt-get upgrade -y
# 安装gnome桌面环境
sudo apt-get install ubuntu-desktop
# 安装相关工具
sudo apt-get install gnome-tweak-tool
5.3 安装systemctl

Windows系统下安装的分发版Ubuntu默认不支持systemctl命令,在这里手动进行安装。

git clone https://github.com/DamionGans/ubuntu-wsl2-systemd-script.git
cd ubuntu-wsl2-systemd-script/
bash ubuntu-wsl2-systemd-script.sh

安装完成重启WSL,以管理员模式打开PowerShell执行以下命令

# 停止服务
net stop LxssManager
# 启动服务
net start LxssManager
5.4 安装远程控制软件xrdp

Ubuntu命令行中运行如下命令完成安装

# 安装xrdp远程控制服务
sudo apt-get install xrdp
#修改默认端口3389改为3390
sudo sed -i 's/3389/3390/g' /etc/xrdp/xrdp.ini
#配置session,否则远程登陆时会闪退
echo "gnome-session" > ~/.xsession
#重启xrdp
sudo systemctl restart xrdp

查看xrdp状态,有绿色的running代表成功运行

#查看xrdp状态
sudo systemctl status xrdp
5.5 windows远程连接ubuntu桌面

按住Windows+ R,在运行框中输入mstsc后按回车,使用windows自带的远程连接工具。
输入localhost:3390。
在这里插入图片描述
输入用户名和密码即可完成远程连接
在这里插入图片描述

### 回答1: 要在WSL中安装深度学习环境,可以按照以下步骤进行操作。 1. 首先,确保已经安装了WSL并选择了适合您的Linux发行,如Ubuntu。 2. 打开WSL终端并运行以下命令,更新系统软件包列表: ``` sudo apt update ``` 3. 安装必要的依赖项,包括Python和pip: ``` sudo apt install python3 python3-pip ``` 4. 安装所需的深度学习库,如TensorFlow或PyTorch。可以使用pip命令来安装它们,例如: ``` pip3 install tensorflow ``` 5. 根据需要,您还可以安装其他深度学习库和工具,如Keras、Scikit-learn等: ``` pip3 install keras scikit-learn ``` 6. 可能需要安装GPU的相关驱动程序和CUDA工具包,以便在WSL中进行GPU加速的深度学习任务。这可能需要更多的配置和步骤,因为WSL并不原生支持CUDA,但是可以通过一些额外的工具和补丁来实现。 请注意,WSL在很大程度上是用于开发目的,而不是用于性能要求较高的深度学习任务。如果您需要更高性能的环境,建议直接在宿主系统上安装深度学习环境,而不是使用WSL。 希望以上步骤对于在WSL中安装深度学习环境有所帮助。 ### 回答2: 要在WSL上安装深度学习环境,首先需要安装WSL,并选择适合的发行,如Ubuntu。安装完成后,可以使用WSL的命令行界面进行操作。 在WSL上安装深度学习环境一般分为以下步骤: 1. 更新系统:使用命令sudo apt update && sudo apt upgrade来更新WSL的系统软件和库。 2. 安装必要的工具:安装一些必要的工具和软件包,如wget、curl等,以便后续的操作。 3. 安装Python:深度学习环境通常需要使用Python作为编程语言,可以通过sudo apt install python来安装Python。 4. 安装pip:Pip是一个Python的包管理工具,使用命令sudo apt install python3-pip来安装pip。 5. 安装深度学习框架:有多种深度学习框架可供选择,如TensorFlow、PyTorch等。可以使用pip安装这些框架,例如使用pip install tensorflow来安装TensorFlow。 6. 安装GPU支持(可选):如果使用GPU进行深度学习训练,还需要安装相应的GPU驱动和CUDA库。具体安装步骤可以参考相应的GPU厂商文档。 7. 安装其他依赖库:深度学习环境通常还依赖于其他的库和软件包,可以使用pip安装这些依赖库。 安装深度学习环境可能会涉及到很多细节和配置,具体操作要根据具体环境和需求来确定。此外,还可以通过WSL启动一个图形界面,以方便使用深度学习工具和编辑器。在图形界面中,可以更方便地进行代码编写、调试和可视化等操作。 总之,在WSL上安装深度学习环境需要经过一系列的准备和安装步骤,可以根据具体需求和环境按照以上步骤进行操作。 ### 回答3: 要在WSL上安装深度学习环境,可以按照以下步骤进行操作: 1. 安装WSL:在Windows系统上,可以通过Microsoft Store或者官方网站下载安装WSL。选择合适的Linux发行,如Ubuntu。 2. 启动WSL:安装完成后,可以在Windows菜单中找到WSL并打开命令行终端。 3. 更新系统:在WSL终端中,使用以下命令更新系统软件包和依赖项: ``` sudo apt update sudo apt upgrade ``` 4. 安装Python和pip:为了使用深度学习框架,需要先安装Python和pip。在WSL中使用以下命令进行安装: ``` sudo apt install python3 python3-pip ``` 5. 安装深度学习库:根据需要选择深度学习框架(如TensorFlow、PyTorch等),并使用pip命令安装相应的库。例如,安装TensorFlow和Keras可以使用以下命令: ``` pip3 install tensorflow pip3 install keras ``` 6. 安装GPU驱动(可选):如果你的系统有NVIDIA GPU并且想要使用GPU加速深度学习训练,可以在WSL中安装相应的GPU驱动和CUDA工具包。具体安装过程较为复杂,建议参考相关文档或教程进行操作。 以上步骤是在WSL上安装深度学习环境的大致流程。根据不同的需求和情况,可能会有一些额外的步骤或配置,建议参考相关文档或教程进行更详细的指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值