Paper365: Day 2 Slidding Mode Observer With Optimized Constant Rate Reaching Law

Basic information

Title: A Novel Sliding Mode Observer With Optimized Constant Rate Reaching Law for Sensorless Control of Induction Motor

Highlight authors: None

Publication: TIE, 2020

Contribution

  • An optimized constant rate reaching law (OCRRL) is adopted to SMO
  • Detaildely analysed the reaching speed for the proposed OCRRL, which behaves the same speed of CRRL

Motivation

  • Compared with other estimators, SMO has a better characteristic of antimodeling uncertainty because of the inherent variable structure, which leads to a better robustness performance.
  • In fact, how the state variables reach the sliding mode surface, i.e., the reaching way to the sliding mode surface, has also the significant influence on the performance of the observer, especially for the fast reaching transient performance and the chattering reduction.
  • SMO + constant rate reaching law (CRRL) cannot balance the dilemma between the requirement of fast reaching transient and the chattering reduction on the sliding mode surface.

SMO DESIGN WITH CONSTANT RATE REACHING LAW FOR SENSORLESS IM DRIVES

Given the induction motor (IM)
[ d i s α d t d i s β d t ] = k 1 ( [ λ ω r − ω r λ ] [ ψ r α ψ r β ] − λ L m [ i s α i s β ] ) − k 2 [ i s α i s β ] + k 3 [ u s α u s β ] (sys1) \begin{aligned} \left[\begin{array}{c} \frac{d i_{s \alpha}}{d t} \\ \frac{d i_{s \beta}}{d t} \end{array}\right]= &k_{1} \left(\left[\begin{array}{cc} \lambda & \omega_{r} \\ -\omega_{r} & \lambda \end{array}\right]\left[\begin{array}{c} \psi_{r \alpha} \\ \psi_{r \beta} \end{array}\right]-\lambda L_{m}\left[\begin{array}{c} i_{s \alpha} \\ i_{s \beta} \end{array}\right]\right) \\ &-k_{2}\left[\begin{array}{c} i_{s \alpha} \\ i_{s \beta} \end{array}\right]+k_{3}\left[\begin{array}{c} u_{s \alpha} \\ u_{s \beta} \end{array}\right] \end{aligned}\tag{sys1} [dtdisαdtdisβ]=k1([λωrωrλ][ψrαψrβ]λLm[isαisβ])k2[isαisβ]+k3[usαusβ](sys1)

[ d ψ r α d t d ψ r β d t ] = − ( [ λ ω r − ω r λ ] [ ψ r α ψ r β ] − λ L m [ i s α i s β ] ) (sys2) \left[\begin{array}{c} \frac{d \psi_{r \alpha}}{d t} \\ \frac{d \psi_{r \beta}}{d t} \end{array}\right]=-\left(\left[\begin{array}{cc} \lambda & \omega_{r} \\ -\omega_{r} & \lambda \end{array}\right]\left[\begin{array}{l} \psi_{r \alpha} \\ \psi_{r \beta} \end{array}\right]-\lambda L_{m}\left[\begin{array}{c} i_{s \alpha} \\ i_{s \beta} \end{array}\right]\right) \tag{sys2} [dtdψrαdtdψrβ]=([λωrωrλ][ψrαψrβ]λLm[isαisβ])(sys2)

The estimation of the matrix G G G can be provided by the sliding mode function as follows:
[ f α f β ] = G ^ = [ G ^ α G ^ β ] = [ λ ω ^ r − ω ^ r λ ] [ ψ ^ r α ψ ^ r β ] [ − λ L m 7 ] [ i ^ s α i ^ s β ] \left[\begin{array}{c} f_{\alpha} \\ f_{\beta} \end{array}\right]=\hat{G}=\left[\begin{array}{c} \hat{G}_{\alpha} \\ \hat{G}_{\beta} \end{array}\right]=\left[\begin{array}{cc} \lambda & \hat{\omega}_{r} \\ -\hat{\omega}_{r} & \lambda \end{array}\right]\left[\begin{array}{c} \hat{\psi}_{r \alpha} \\ \hat{\psi}_{r \beta} \end{array}\right]\left[\begin{array}{c} -\lambda L_{m} \\ 7 \end{array}\right]\left[\begin{array}{l} \hat{i}_{s \alpha} \\ \hat{i}_{s \beta} \end{array}\right] [fαfβ]=G^=[G^αG^β]=[λω^rω^rλ][ψ^rαψ^rβ][λLm7][i^sαi^sβ]

SMO structure

Based on ( s y s 1 ) (sys1) (sys1), the SMO for current observation is transformed into:
[ d i ^ s α d t d i ^ s β d t ] = k 1 [ f α f β ] − k 2 [ i ^ s α i ^ s β ] + k 3 [ u s α u s β ] \left[\begin{array}{c} \frac{d \hat{i}_{s \alpha}}{d t} \\ \frac{d \hat{i}_{s \beta}}{d t} \end{array}\right]=k_{1}\left[\begin{array}{c} f_{\alpha} \\ f_{\beta} \end{array}\right]-k_{2}\left[\begin{array}{c} \hat{i}_{s \alpha} \\ \hat{i}_{s \beta} \end{array}\right]+k_{3}\left[\begin{array}{l} u_{s \alpha} \\ u_{s \beta} \end{array}\right] [dtdi^sαdtdi^sβ]=k1[fαfβ]k2[i^sαi^sβ]+k3[usαusβ]
Based on ( s y s 2 ) (sys2) (sys2), the SMO for flux-linkage observation is as follows:
[ d ψ ^ r α d t d ψ ^ r β d t ] = − [ f α f β ] \left[\begin{array}{c} \frac{d \hat{\psi}_{r \alpha}}{d t} \\ \frac{d \hat{\psi}_{r \beta}}{d t} \end{array}\right]=-\left[\begin{array}{l} f_{\alpha} \\ f_{\beta} \end{array}\right] [dtdψ^rαdtdψ^rβ]=[fαfβ]
where
[ f α f β ] = − [ λ 0 sign ⁡ ( S α ) λ 0 sign ⁡ ( S β ) ] \left[\begin{array}{l} f_{\alpha} \\ f_{\beta} \end{array}\right]=-\left[\begin{array}{l} \lambda_{0} \operatorname{sign}\left(S_{\alpha}\right) \\ \lambda_{0} \operatorname{sign}\left(S_{\beta}\right) \end{array}\right] [fαfβ]=[λ0sign(Sα)λ0sign(Sβ)]

With λ 0 > 0 \lambda_0 > 0 λ0>0 being the gain of the sliding mode function.

Sliding surface design

Conventionally, the sliding surface of this paper is merely defined as the error
S = [ S α S β ] = [ i ~ s α i ~ s β ] = [ i ^ s α − i s α i ^ s β − i s β ] S = \left[\begin{array}{c} S_{\alpha} \\ S_{\beta} \end{array}\right]=\left[\begin{array}{l} \tilde{i}_{s \alpha} \\ \tilde{i}_{s \beta} \end{array}\right]=\left[\begin{array}{l} \hat{i}_{s \alpha}-i_{s \alpha} \\ \hat{i}_{s \beta}-i_{s \beta} \end{array}\right] S=[SαSβ]=[i~sαi~sβ]=[i^sαisαi^sβisβ]
In this paper, the sliding mode surface is defined by considering the estimation error of stator currents and the rate of the estimation error simultaneously (merely the PI-type SS):
S I = [ S I α S I β ] = [ p 1 i ~ s α + p 2 ∫ i ~ s α d t p 1 i ~ s β + p 2 ∫ i ~ s β d t ] S_{I}=\left[\begin{array}{c} S_{I \alpha} \\ S_{I \beta} \end{array}\right]=\left[\begin{array}{l} p_{1} \tilde{i}_{s \alpha}+p_{2} \int \tilde{i}_{s \alpha} d t \\ p_{1} \tilde{i}_{s \beta}+p_{2} \int \tilde{i}_{s \beta} d t \end{array}\right] SI=[SIαSIβ]=[p1i~sα+p2i~sαdtp1i~sβ+p2i~sβdt]
The parameter selection criteria one might refer to PID method.

SMO with reaching law

SMO+CRRL

Conventional constant rate reaching law (CRRL):
S ˙ I = − k sign ⁡ ( S I ) = − k [ sign ⁡ ( S I α ) sign ⁡ ( S I β ) ] \dot{S}_{I}=-k \operatorname{sign}\left(S_{I}\right)=-k\left[\begin{array}{l} \operatorname{sign}\left(S_{I \alpha}\right) \\ \operatorname{sign}\left(S_{I \beta}\right) \end{array}\right] S˙I=ksign(SI)=k[sign(SIα)sign(SIβ)]

SMO+Optimized CRRL

{ S ˙ I = − g ( i ~ s ) ⋅ sign ⁡ ( S I ) g ( i ~ s ) = k ′ ε + ( 1 + 1 / ∣ i ~ s ∣ − ε ) e − η ∣ δ ∣ (OCRRL) \left\{\begin{array}{l} \dot{S}_{I}=-g\left(\tilde{i}_{s}\right) \cdot \operatorname{sign}\left(S_{I}\right) \\ g\left(\tilde{i}_{s}\right)=\frac{k^{\prime}}{\varepsilon+\left(1+1 /\left|\tilde{i}_{s}\right|-\varepsilon\right) e^{-\eta|\delta|}} \end{array}\right.\tag{OCRRL} {S˙I=g(i~s)sign(SI)g(i~s)=ε+(1+1/i~sε)eηδk(OCRRL)

where k ′ > 0 , η > 0 , 0 < ε < 1 , k^{\prime}>0, \eta>0,0<\varepsilon<1, k>0,η>0,0<ε<1, and δ = i ^ s α i s β − i s α i ^ s β \delta=\hat{i}_{s \alpha} i_{s \beta}-i_{s \alpha} \hat{i}_{s \beta} δ=i^sαisβisαi^sβ

Analysis of Dynamic Performance for SMO+OCRRL

Recalling ( O C R R L ) (OCRRL) (OCRRL), the reaching time t 1 t_1 t1 can be given as:
S ˙ I [ ε + ( 1 + 1 / ∣ g ( i ~ s ) ∣ − ε ) e − η ∣ δ ∣ ] = − k ′ ⋅ sign ⁡ ( S I ) (SSM) \dot{S}_{I}\left[\varepsilon+\left(1+1 /\left|g\left(\tilde{i}_{s}\right)\right|-\varepsilon\right) e^{-\eta|\delta|}\right]=-k^{\prime} \cdot \operatorname{sign}\left(S_{I}\right) \tag{SSM} S˙I[ε+(1+1/g(i~s)ε)eηδ]=ksign(SI)(SSM)
The reaching phase details can be given as:

  1. If the state variables are far away from the sliding mode surface, which means that when ∣ δ ∣ |δ| δ increases, then e − η ∣ δ ∣ e^{−η |\delta|} eηδ converges to 0 0 0, and g ( i ~ s ) g(\tilde{i}_s ) g(i~s) will converge to k ′ / ε k'/ε k/ε. Since 0 < ε < 1 , k ′ / ε > k ′ 0<ε<1, k'/ε>k' 0<ε<1,k/ε>k, which means that the gain of the CRRL is large, and the fast reaching speed is obtained at this time.
  2. If the state variables are close to the sliding mode surface, which means that when ∣ δ ∣ |δ| δ decreases, e − η ∣ δ ∣ e^{−η |δ |} eηδ converges to 1 1 1, and g ( i ~ s ) g(\tilde{i}_s ) g(i~s) will converge to k ′ ∣ i ~ s ∣ / ( 1 + ∣ i ~ s ∣ ) k^{\prime}\left|\tilde{i}_{s}\right| /\left(1+\left|\tilde{i}_{s}\right|\right) ki~s/(1+i~s). Since the state variables are close to the sliding mode surface, is converges to zero, which means that the gain of the CRRL is small, and the chattering reduction is achieved at this time.

Considering time span [ t 0 , t 1 ] [t_0,t_1] [t0,t1] with final variable S I ( t 1 ) = 0 S_I(t_1) = 0 SI(t1)=0, the reaching time can be calculated by integrating ( S S M ) (SSM) (SSM):
t 1 = 1 k ′ [ ε ∣ S I ( 0 ) ∣ + 1 + 1 / ∣ i ~ s ∣ − ε η ( 1 − e − η S I ( 0 ) ) ] (Tr1) t_{1}=\frac{1}{k^{\prime}}\left[\varepsilon\left|S_{I}(0)\right|+\frac{1+1 /\left|\tilde{i}_{s}\right|-\varepsilon}{\eta}\left(1-e^{-\eta S_{I}(0)}\right)\right]\tag{Tr1} t1=k1[εSI(0)+η1+1/i~sε(1eηSI(0))](Tr1)
Since 1 − e − η S I ( 0 ) < 1 1 - e^{-\eta S_I(0)} < 1 1eηSI(0)<1, ( T r 1 ) (Tr1) (Tr1) can be derived as:
t 1 < 1 k ′ [ ε ∣ S I ( 0 ) ∣ + 1 + 1 / ∣ i ~ s ∣ − ε η ] (Tr2) t_{1}<\frac{1}{k^{\prime}}\left[\varepsilon\left|S_{I}(0)\right|+\frac{1+1 /\left|\tilde{i}_{s}\right|-\varepsilon}{\eta}\right]\tag{Tr2} t1<k1[εSI(0)+η1+1/i~sε](Tr2)
In this paper, η \eta η is chosen such that η ≫ ( 1 + 1 / ∣ i ~ s ∣ − ε ) / ( ε ∣ S I ( 0 ) ∣ ) \eta \gg\left(1+1 /\left|\tilde{i}_{s}\right|-\varepsilon\right) /\left(\varepsilon\left|S_{I}(0)\right|\right) η(1+1/i~sε)/(εSI(0)), in which η \eta η is a positiv efactor which is used to adjust the rate of g ( i ~ s ) g(\tilde{i}_s) g(i~s). Simply setting η = 3000 \eta = 3000 η=3000, ( T r 2 ) (Tr2) (Tr2) can be given as:

t 1 < ε ∣ S I ( 0 ) ∣ k ′ t_{1}<\frac{\varepsilon\left|S_{I}(0)\right|}{k^{\prime}} t1<kεSI(0)

In the original context of the paper, the author further illustrated that the proposed OCRRL has the same reaching rate with the CRRL, which is omitted here.

Simulation results

在这里插入图片描述
Observation performance with (a) SMO+CRRL (b) SMO+OCRRL

My finding

  1. Merely adopted a new reaching law (which is studied by the existing literature)
  2. The chattering phenomenon is well alleviated
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值