该博客为个人学习清风建模的学习笔记,部分课程可以在B站:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili
目录
名称 | 重要性 | 难度 |
Topsis优劣解距离法 | ★★★★★ | ★★ |
C.L.Hwang 和 K.Yoon 于 1981 年首次提出 TOPSIS (Technique forOrder Preference by Similarity to an Ideal Solution),可翻译为逼近理想解排序法,国内常简称为 优劣解距离法 。TOPSIS 法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。基本过程 为先将原始数据矩阵统一指标类型(一般正向化处理) 得到正向化的矩阵,再对正向化的矩阵进行标准化处理以消除各指标量纲的影响,并找到有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行。
1模型介绍
1.1引入模型
层次分析法的局限性:不适用于已知指标或指标数大于16的问题。
因此引入新的模型解决评价类问题。
从成绩排名的例子引入:
进行评分使用构造计算评分的公式:
但是此时小王的评分变成了0,不合理所以再一次进行修改:
进行这样修改的三点解释:
1.2拓展问题
新增加了一个指标,现在要综合评价四位同学,并为他们进行评分。

成绩是 越高(大)越好 ,这样的指标称为 极大型指标(效益型指标) 。与他人争吵的次数 越少(越小)越好 ,这样的指标称为 极小型指标(成本型指标) 。
1.2.1 统一指标类型
解决方法:统一指标类型
将所有的指标转化为极大型称为指标正向化(最常用)
1.2.2标准化处理
为了 消去不同指标量纲的影响 ,需要对已经正向化的矩阵进行 标准化处理
1.2.3计算得分
最大值/最小值:每一列的最大值/最小值组合的向量
距离:欧氏距离
因此以上例子计算得分为:
在进行归一化:
2TOPSIS步骤
2.1将原始矩阵正向化
所谓的将原始矩阵正向化,就是要将所有的指标类型统一转化为 极大型指标。 (转换的函数形式可以不唯一哦 ~ )
1、极小型指标 -> 极大型指标
2、中间型指标 -> 极大型指标
3、区间型指标 ->极大型指标
%% 第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']);
if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]
% 注意,Position和Type是两个同维度的行向量
for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素
% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end
2.2正向化矩阵标准化
标准化的目的是消除不同指标量纲的影响。
%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)
2.3计算得分并归一化
%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ],2) .^ 0.5; % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ],2) .^ 0.5; % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N); % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')
3代码知识
1. 将 EXCEL 中的数据导入到 Matlab, 并另存为 mat ⽂件,下次可直接 loadMatlab 中函数的编写和调用2. magic(n) 幻方矩阵3. sort 函数4. zeros 和 ones 函数
3.1导入数据
%% 第一步:把数据复制到工作区,并将这个矩阵命名为X
% (1)在工作区右键,点击新建(Ctrl+N),输入变量名称为X
% (2)在Excel中复制数据,再回到Matlab中右键,点击粘贴Excel数据(Ctrl+Shift+V)
% (3)关掉这个窗口,点击X变量,右键另存为,保存为mat文件(下次就不用复制粘贴了,只需使用load命令即可加载数据)
% (4)注意,代码和数据要放在同一个目录下哦,且Matlab的当前文件夹也要是这个目录。
clear;clc
load data_water_quality.mat
%% 注意:如果提示: 错误使用 load,无法读取文件 'data_water_quality.mat'。没有此类文件或目录。
% 那么原因是因为你的Matlab的当前文件夹中不存在这个文件
% 可以使用cd函数修改Matlab的当前文件夹
% 比如说,我的代码和数据放在了: D:第2讲.TOPSIS法(优劣解距离法)\代码和例题数据
% 那么我就可以输入命令:
% cd 'D:第2讲.TOPSIS法(优劣解距离法)\代码和例题数据'
3.2. magic(n)幻方矩阵
幻方矩阵每一列的和都相等
A = magic(5)
输出结果:
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
3.3 sort函数
% sort(A)若A是向量不管是列还是行向量,默认都是对A进行升序排列。sort(A)是默认的升序,而sort(A,'descend')是降序排序。
% sort(A)若A是矩阵,默认对A的各列进行升序排列
% sort(A,dim)
% dim=1时等效sort(A)
% dim=2时表示对A中的各行元素升序排列
%sort(A,2)
% A = [2,1,3,8]
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend') ,排序后,sA是排序好的向量,index是向量sA中对A的索引。
% sA = 8 3 2 1
% index = 4 3 1 2
3.4函数定义
% function [输出变量] = 函数名称(输入变量)
% 函数的中间部分都是函数体 函数名与文件名一致
% 函数的最后要用end结尾
% 输出变量和输入变量可以有多个,用逗号隔开
% function [a,b,c]=test(d,e,f)
% a=d+e;
% b=e+f;
% c=f+d;
% end
% 自定义的函数要单独放在一个m文件中,不可以直接放在主函数里面(和其他大多数语言不同)
3.5. zeros和ones函数
%zeros函数用法: zeros(3) zeros(3,1) ones(3)
%三行一列都为0
4模型拓展
每个指标的权重不一致:
因此引出拓展模型:带权重的TOPSIS
5总结
Topsis优劣解距离法适用于评价类问题,拿到问题先根据层次分析法中部分内容将评价指标转换为原始矩阵;在原始矩阵的基础上,判定评价指标属于极大型、极小型、中间型、区间型中的哪一类,然后正向化到极大型,生成正向化矩阵;在正向化矩阵基础上标准化,再根据计算公式计算得分并且归一化。
拓展:Topsis模型可以不默认权值。